
K-means算法原理与R语言实例
聚类是将相似对象归到同一个簇中的方法,这有点像全自动分类。簇内的对象越相似,聚类的效果越好。支持向量机、神经网络所讨论的分类问题都是有监督的学习方式,现在我们所介绍的聚类则是无监督的。其中,K均值(K-means)是最基本、最简单的聚类算法。
在K均值算法中,质心是定义聚类原型(也就是机器学习获得的结果)的核心。在介绍算法实施的具体过程中,我们将演示质心的计算方法。而且你将看到除了第一次的质心是被指定的以外,此后的质心都是经由计算均值而获得的。
首先,选择K个初始质心(这K个质心并不要求来自于样本数据集),其中K是用户指定的参数,也就是所期望的簇的个数。每个数据点都被收归到距其最近之质心的分类中,而同一个质心所收归的点集为一个簇。然后,根据本次分类的结果,更新每个簇的质心。重复上述数据点分类与质心变更步骤,直到簇内数据点不再改变,或者等价地说,直到质心不再改变。
基本的K均值算法描述如下:
根据数据点到新质心的距离,再次对数据集中的数据进行分类,如图13-2(c)所示。然后,算法根据新的分类来计算新的质心,并再次根据数据点到新质心的距离,对数据集中的数据进行分类。结果发现簇内数据点不再改变,所以算法执行结束,最终的聚类结果如图13-2(d)所示。
对于距离函数和质心类型的某些组合,算法总是收敛到一个解,即K均值到达一种状态,聚类结果和质心都不再改变。但为了避免过度迭代所导致的时间消耗,实践中,也常用一个较弱的条件替换掉“质心不再发生变化”这个条件。例如,使用“直到仅有1%的点改变簇”。
尽管K均值聚类比较简单,但它也的确相当有效。它的某些变种甚至更有效, 并且不太受初始化问题的影响。但K均值并不适合所有的数据类型。它不能处理非球形簇、不同尺寸和不同密度的簇,尽管指定足够大的簇个数时它通常可以发现纯子簇。对包含离群点的数据进行聚类时,K均值也有问题。在这种情况下,离群点检测和删除大有帮助。K均值的另一个问题是,它对初值的选择是敏感的,这说明不同初值的选择所导致的迭代次数可能相差很大。此外,K值的选择也是一个问题。显然,算法本身并不能自适应地判定数据集应该被划分成几个簇。最后,K均值仅限于具有质心(均值)概念的数据。一种相关的K中心点聚类技术没有这种限制。在K中心点聚类中,我们每次选择的不再是均值,而是中位数。这种算法实现的其他细节与K均值相差不大,我们不再赘述。
最后我们给出一个实际应用的例子。(代码采用我最喜欢用做数据挖掘的R语言来实现)
一组来自世界银行的数据统计了30个国家的两项指标,我们用如下代码读入文件并显示其中最开始的几行数据。可见,数据共分三列,其中第一列是国家的名字,该项与后面的聚类分析无关,我们更关心后面两列信息。第二列给出的该国第三产业增加值占GDP的比重,最后一列给出的是人口结构中年龄大于等于65岁的人口(也就是老龄人口)占总人口的比重。
为了方便后续处理,下面对读入的数据库进行一些必要的预处理,主要是调整列标签,以及用国名替换掉行标签(同时删除包含国名的列)。
如果你绘制这些数据的散点图,不难发现这些数据大致可以分为两组。事实上,数据中有一半的国家是OECD成员国,而另外一半则属于发展中国家(包括一些东盟国家、南亚国家和拉美国家)。所以我们可以采用下面的代码来进行K均值聚类分析。
对于聚类结果,限于篇幅我们仍然只列出了最开始的几条。但是如果用图形来显示的话,可能更易于接受。下面是示例代码。
上述代码的执行结果如图13-3所示。
另外一种与k-means非常类似的算法是k-median算法。此处已经无需再详细介绍k-中值算法的细节了,基本上和k-means一样,只是把所有均值出现的地方换成中值而已。这个思想看起好像很不起眼,但是你还别说,k-median算法还真的存在,而且是k-means算法的一个重要补充和改进。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03