京公网安备 11010802034615号
经营许可证编号:京B2-20210330
机器学习优化算法之爬山算法小结
机器学习的项目,不可避免的需要补充一些优化算法,对于优化算法,爬山算法还是比较重要的.鉴于此,花了些时间仔细阅读了些爬山算法的paper.基于这些,做一些总结.
目录
1. 爬山算法简单描述
2. 爬山算法的主要算法
2.1 首选爬山算法
2.2 最陡爬山算法
2.3 随机重新开始爬山算法
2.4 模拟退火算法(也是爬山算法)
3. 实例求解
正文
爬山算法,是一种局部贪心的最优算法. 该算法的主要思想是:每次拿相邻点与当前点进行比对,取两者中较优者,作为爬坡的下一步.
举一个例子,求解下面表达式
的最大值. 且假设 x,y均按为0.1间隔递增.
为了更好的描述,我们先使用pyhton画出该函数的图像:

图像的python代码:
1 # encoding:utf8
2 from matplotlib import pyplot as plt
3 import numpy as np
4 from mpl_toolkits.mplot3d import Axes3D
5
6
7 def func(X, Y, x_move=0, y_move=0):
8 def mul(X, Y, alis=1):
9 return alis * np.exp(-(X * X + Y * Y))
10
11 return mul(X, Y) + mul(X - x_move, Y - y_move, 2)
12
13
14 def show(X, Y):
15 fig = plt.figure()
16 ax = Axes3D(fig)
17 X, Y = np.meshgrid(X, Y)
18 Z = func(X, Y, 1.7, 1.7)
19 plt.title("demo_hill_climbing")
20 ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow', )
21 ax.set_xlabel('x label', color='r')
22 ax.set_ylabel('y label', color='g')
23 ax.set_zlabel('z label', color='b')
24 # 具体函数方法可用 help(function) 查看,如:help(ax.plot_surface)
25 # ax.scatter(X,Y,Z,c='r') #绘点
26 plt.show()
27
28 if __name__ == '__main__':
29 X = np.arange(-2, 4, 0.1)
30 Y = np.arange(-2, 4, 0.1)
31
32 show(X,Y)
View Code
对于上面这个问题,我们使用爬山算法该如何求解呢? 下面我们从爬山算法中的几种方式分别求解一下这个小题.
1. 首选爬山算法
依次寻找该点X的邻近点中首次出现的比点X价值高的点,并将该点作为爬山的点(此处说的价值高,在该题中是指Z或f(x,y)值较大). 依次循环,直至该点的邻近点中不再有比其大的点. 我们成为该点就是山的顶点,又称为最优点.
那么解题思路就有:
1. 随机选择一个登山的起点S(x0,y0,z0),并以此为起点开始登山.直至"登顶".
下面是我们实现的代码:
1 # encoding:utf8
2 from random import random, randint
3
4 from matplotlib import pyplot as plt
5 import numpy as np
6 from mpl_toolkits.mplot3d import Axes3D
7
8
9 def func(X, Y, x_move=1.7, y_move=1.7):
10 def mul(X, Y, alis=1):
11 return alis * np.exp(-(X * X + Y * Y))
12
13 return mul(X, Y) + mul(X - x_move, Y - y_move, 2)
14
15
16 def show(X, Y, Z):
17 fig = plt.figure()
18 ax = Axes3D(fig)
19 plt.title("demo_hill_climbing")
20 ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow', )
21 ax.set_xlabel('x label', color='r')
22 ax.set_ylabel('y label', color='g')
23 ax.set_zlabel('z label', color='b')
24 # ax.scatter(X,Y,Z,c='r') #绘点
25 plt.show()
26
27
28 def drawPaht(X, Y, Z,px,py,pz):
29 fig = plt.figure()
30 ax = Axes3D(fig)
31 plt.title("demo_hill_climbing")
32 ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow', )
33 ax.set_xlabel('x label', color='r')
34 ax.set_ylabel('y label', color='g')
35 ax.set_zlabel('z label', color='b')
36 ax.plot(px,py,pz,'r.') #绘点
37 plt.show()
38
39
40 def hill_climb(X, Y):
41 global_X = []
42 global_Y = []
43
44 len_x = len(X)
45 len_y = len(Y)
46 # 随机登山点
47 st_x = randint(0, len_x-1)
48 st_y = randint(0, len_y-1)
49
50 def argmax(stx, sty, alisx=0, alisy=0):
51 cur = func(X[0][st_x], Y[st_y][0])
52 next = func(X[0][st_x + alisx], Y[st_y + alisy][0])
53
54 return cur < next and True or False
55
56 while (len_x > st_x >= 0) or (len_y > st_y >= 0):
57 if st_x + 1 < len_x and argmax(st_x, st_y, 1):
58 st_x += 1
59 elif st_y + 1 < len_x and argmax(st_x, st_y, 0, 1):
60 st_y += 1
61 elif st_x >= 1 and argmax(st_x, st_y, -1):
62 st_x -= 1
63 elif st_y >= 1 and argmax(st_x, st_y, 0, -1):
64 st_y -= 1
65 else:
66 break
67 global_X.append(X[0][st_x])
68 global_Y.append(Y[st_y][0])
69 return global_X, global_Y, func(X[0][st_x], Y[st_y][0])
70
71
72 if __name__ == '__main__':
73 X = np.arange(-2, 4, 0.1)
74 Y = np.arange(-2, 4, 0.1)
75 X, Y = np.meshgrid(X, Y)
76 Z = func(X, Y, 1.7, 1.7)
77 px, py, maxhill = hill_climb(X, Y)
78 print px,py,maxhill
79 drawPaht(X, Y, Z,px,py,func(np.array(px), np.array(py), 1.7, 1.7))
View Code
对比几次运行的结果:

从上图中,我们可以比较清楚的观察到,首选爬山算法的缺陷.
2.那么最陡爬山算法呢?
简单描述:
最陡爬山算法是在首选爬山算法上的一种改良,它规定每次选取邻近点价值最大的那个点作为爬上的点.
下面我们来实现一下它:
1 # encoding:utf8
2 from random import random, randint
3
4 from matplotlib import pyplot as plt
5 import numpy as np
6 from mpl_toolkits.mplot3d import Axes3D
7
8
9 def func(X, Y, x_move=1.7, y_move=1.7):
10 def mul(X, Y, alis=1):
11 return alis * np.exp(-(X * X + Y * Y))
12
13 return mul(X, Y) + mul(X - x_move, Y - y_move, 2)
14
15
16 def show(X, Y, Z):
17 fig = plt.figure()
18 ax = Axes3D(fig)
19 plt.title("demo_hill_climbing")
20 ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow', )
21 ax.set_xlabel('x label', color='r')
22 ax.set_ylabel('y label', color='g')
23 ax.set_zlabel('z label', color='b')
24 # ax.scatter(X,Y,Z,c='r') #绘点
25 plt.show()
26
27
28 def drawPaht(X, Y, Z, px, py, pz):
29 fig = plt.figure()
30 ax = Axes3D(fig)
31 plt.title("demo_hill_climbing")
32 ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow', )
33 ax.set_xlabel('x label', color='r')
34 ax.set_ylabel('y label', color='g')
35 ax.set_zlabel('z label', color='b')
36 ax.plot(px, py, pz, 'r.') # 绘点
37 plt.show()
38
39
40 def hill_climb(X, Y):
41 global_X = []
42 global_Y = []
43
44 len_x = len(X)
45 len_y = len(Y)
46 # 随机登山点
47 st_x = randint(0, len_x - 1)
48 st_y = randint(0, len_y - 1)
49
50 def argmax(stx, sty, alisx, alisy):
51 cur = func(X[0][stx], Y[sty][0])
52 next = func(X[0][alisx], Y[alisy][0])
53 if cur < next:
54 return alisx, alisy
55 return stx, sty
56 #return cur < next and alisx, alisy or stx, sty
57
58 tmp_x = st_x
59 tmp_y = st_y
60 while (len_x > st_x >= 0) or (len_y > st_y >= 0):
61 if st_x + 1 < len_x:
62 tmp_x, tmp_y = argmax(tmp_x, tmp_y, (st_x + 1), st_y)
63
64 if st_x >= 1:
65 tmp_x, tmp_y = argmax(tmp_x, tmp_y, st_x - 1, st_y)
66
67 if st_y + 1 < len_x:
68 tmp_x, tmp_y = argmax(tmp_x, tmp_y, st_x, st_y + 1)
69
70 if st_y >= 1:
71 tmp_x, tmp_y = argmax(tmp_x, tmp_y, st_x, st_y - 1)
72
73 if tmp_x != st_x or tmp_y != st_y:
74 st_x = tmp_x
75 st_y = tmp_y
76 else:
77 break
78 global_X.append(X[0][st_x])
79 global_Y.append(Y[st_y][0])
80 return global_X, global_Y, func(X[0][st_x], Y[st_y][0])
81
82
83 if __name__ == '__main__':
84 X = np.arange(-2, 4, 0.1)
85 Y = np.arange(-2, 4, 0.1)
86 X, Y = np.meshgrid(X, Y)
87 Z = func(X, Y, 1.7, 1.7)
88 px, py, maxhill = hill_climb(X, Y)
89 print px, py, maxhill
90 drawPaht(X, Y, Z, px, py, func(np.array(px), np.array(py), 1.7, 1.7))
View Code

从这个结果来看,因为范围扩大了一点,所以效果会好一点点,当依旧是一个局部最优算法.
3.随机重新开始爬山算法呢?
简单的描述:
随机重新开始爬山算法是基于最陡爬山算法,其实就是加一个达到全局最优解的条件,如果满足该条件,就结束运算,反之则无限次重复运算最陡爬山算法.
由于此题,并没有结束的特征条件,我们这里就不给予实现.
4.模拟退火算法
简单描述:
(1)随机挑选一个单元k,并给它一个随机的位移,求出系统因此而产生的能量变化ΔEk。
(2)若ΔEk?0,该位移可采纳,而变化后的系统状态可作为下次变化的起点;
若ΔEk>0,位移后的状态可采纳的概率为 
式中T为温度,然后从(0,1)区间均匀分布的随机数中挑选一个数R,若R<Pk,则将变化后的状态作为下次的起点;否则,将变化前的状态作为下次的起点。 数据分析培训
(3)转第(1)步继续执行,知道达到平衡状态为止。
代码实现为:
1 # encoding:utf8
2 from random import random, randint
3
4 from matplotlib import pyplot as plt
5 import numpy as np
6 from mpl_toolkits.mplot3d import Axes3D
7
8
9 def func(X, Y, x_move=1.7, y_move=1.7):
10 def mul(X, Y, alis=1):
11 return alis * np.exp(-(X * X + Y * Y))
12
13 return mul(X, Y) + mul(X - x_move, Y - y_move, 2)
14
15
16 def show(X, Y, Z):
17 fig = plt.figure()
18 ax = Axes3D(fig)
19 plt.title("demo_hill_climbing")
20 ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow', )
21 ax.set_xlabel('x label', color='r')
22 ax.set_ylabel('y label', color='g')
23 ax.set_zlabel('z label', color='b')
24 # ax.scatter(X,Y,Z,c='r') #绘点
25 plt.show()
26
27
28 def drawPaht(X, Y, Z, px, py, pz):
29 fig = plt.figure()
30 ax = Axes3D(fig)
31 plt.title("demo_hill_climbing")
32 ax.plot_surface(X, Y, Z, rstride=1, cstride=1, color='b' )
33 ax.set_xlabel('x label', color='r')
34 ax.set_ylabel('y label', color='g')
35 ax.set_zlabel('z label', color='b')
36 ax.plot(px, py, pz, 'r.') # 绘点
37 plt.show()
38
39
40 def hill_climb(X, Y):
41 global_X = []
42 global_Y = []
43 # 初始温度
44 temperature = 105.5
45 # 温度下降的比率
46 delta = 0.98
47 # 温度精确度
48 tmin = 1e-10
49
50 len_x = len(X)
51 len_y = len(Y)
52
53 # 随机登山点
54 st_x = X[0][randint(0, len_x - 1)]
55 st_y = Y[randint(0, len_y - 1)][0]
56 st_z = func(st_x, st_y)
57
58 def argmax(stx, sty, alisx, alisy):
59 cur = func(st_x, st_y)
60 next = func(alisx, alisy)
61
62 return cur < next and True or False
63
64 while (temperature > tmin):
65 # 随机产生一个新的邻近点
66 # 说明: 温度越高幅度邻近点跳跃的幅度越大
67 tmp_x = st_x + (random() * 2 - 1) * temperature
68 tmp_y = st_y + + (random() * 2 - 1) * temperature
69 if 4 > tmp_x >= -2 and 4 > tmp_y >= -2:
70 if argmax(st_x, st_y, tmp_x, tmp_y):
71 st_x = tmp_x
72 st_y = tmp_y
73 else: # 有机会跳出局域最优解
74 pp = 1.0 / (1.0 + np.exp(-(func(tmp_x, tmp_y) - func(st_x, st_y)) / temperature))
75 if random() < pp:
76 st_x = tmp_x
77 st_y = tmp_y
78 temperature *= delta # 以一定的速率下降
79 global_X.append(st_x)
80 global_Y.append(st_y)
81 return global_X, global_Y, func(st_x, st_y)
82
83
84 if __name__ == '__main__':
85 X = np.arange(-2, 4, 0.1)
86 Y = np.arange(-2, 4, 0.1)
87 X, Y = np.meshgrid(X, Y)
88 Z = func(X, Y, 1.7, 1.7)
89 px, py, maxhill = hill_climb(X, Y)
90 print px, py, maxhill
91 drawPaht(X, Y, Z, px, py, func(np.array(px), np.array(py), 1.7, 1.7))
View Code
效果:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27