京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据是如何入侵我们的生活的
我们正在产生大量数据。
点击鼠标,就能支付信用卡账单;在手机上,就能实现转账;还有些应用程序可以让你轻松地炒股,或是投资初创企业等等。
所有这些设备和解决方案创造出了庞大的数据集,它们也被称为大数据。每个个体行为集中起来,能够揭示出消费、借贷和投资的总体情况。
随着数据驱动性能的新成果投入使用,常常带来颠覆性变化,这会影响整个公司,甚至改变业内传统的盈利模式。试举几例:
1、改变零售企业的市场决策
例如,在零售业,大数据和预测分析会创造以消费者为中心的应用,改变了企业预测然后满足客户需求的方式。为了做到这些,零售商会对庞大的数据存储加以利用,从中发掘价值。
企业数据人员利用数据挖掘得出的诸多发现来识别消费者的购买习惯。能够阐明购买决策过程的模式浮出水面,让零售商能够准确预测需求,优化对消费者的价值交付。这种以消费者为中心的数据使用方法,会推动企业的利润大幅增长。
2、改变传统教育数据应用的范式
根据2015年10月研究和市场(Research and Markets)公司发布的报告,在全球大数据产业中,教育大数据占据了8%的市场份额,并将以10%的复合年均增长率快速发展。预计到2020年,教育大数据产业将位居全球大数据产业第八位。
大数据对教育的重要价值,在于可以实现大量教育数据的采集、处理和分析,以改变传统教育数据应用的范式,通过构建教育领域相关模型,探索教育变量之间的相关关系,为教育教学决策提供有效支持,从而实现人才培养个性化、教学评价多样化、教育决策科学化。
在大数据技术快速发展的背景下,国内外已经出现了越来越多的基于数据的教育应用。美国一家教育科技公司“Knewton”,通过数据科学、机器学习技术、知识图谱等,搭建适应性学习引擎,为学生提供“因材施教”的个性化学习体验;普渡大学的课程信号系统,根据学生在学习管理系统中的学习情况以及学生过去的学业表现,运用商业智能分析技术,判断学生可能存在的学业风险,促进学业成功。
3、改善医疗机构的疗效开发更好的药物
在医疗保健业,供应商正在利用去身份化的临床数据,同时捕捉联网医疗设备和监测仪器产生的其他数据流,以及来自于诊断、治疗和监护服务的信息。通过分析,模式被转换成可执行的见解。通过对种类广泛的关联信息进行分析,医疗机构可以改善疗效、开发更好的药物、识别潜在风险和降低成本。
但在医疗保健业,数据分析带来的好处有赖于适时获取准确数据的能力。如想要弄清楚某种药物的已知副作用和使用该药物的患者群的再入院率之间有何关联,就需要护理过程的每一个环节都能获取可靠安全的信息。但是在这些见解的获取过程中阐发的诸多可能性,可能会带来更好的处方方法、更好的医学配方和更低的再入院率。
数据驱动见解的应用范围并不仅限于零售业和医疗保健业。能够提供无缝信息流的全面整合系统,完全有可能为所有行业保驾护航。
大数据应用的三个层面
目前的对大数据的挖掘和使用主要聚集在应用层,根据wuliashine在知乎上的分析,应有层的精准营销主要体现在这几个方面:
对用户行为特征分析
基于大量的事实数据,我们可以年龄、职业、学历、收入等维度分析用户的喜好和习惯,给用户设定“标签”,做到比用户更了解自己。
精准消息推送
依靠数据分析结果的支撑,在对用户行为和特征分析之后,我们对用户群体进行细分,用邮件,短信,客户端推荐,甚至是传统的商店产品的组合罗列、搭配销售来对特定客户推荐特定产品,实现精准定位。
挖掘重点客户
二八理论告诉我们,80%的利润来源于那少部分忠实的老用户,而且开发一个新用户的成本也高得多,所以维系老用户,挖掘重点用户成了重中之重。也是通过对用户行为的分析,我们来判断哪些用户是与企业的产品和服务匹配的,是最有价值的用户。最直接的就是网站的访问,可以判断用户关心的东西是否与企业有关。当然可以借助外部的社会化媒体信息,从千丝万缕的联系总挖掘对应的信息,综合起来,帮助企业筛选重点用户。
结语
随着设备和信息来源的不断增多,一方面碎片化的数据使分析和思考变得更加困难,另一方面大数据为更多的企业提供了非凡的机遇。让这些领域的从业者能够作出更明智的决定,开发出更有效的产品。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30