
回归问题提出
首先需要明确回归问题的根本目的在于预测。对于某个问题,一般我们不可能测量出每一种情况(工作量太大),故多是测量一组数据,基于此数据去预测其他未测量数据。
比如课程给出的房屋面积、房间数与价格的对应关系,如下表:
若要测量出所有情况,不知得测到猴年马月了。有了上面这一组测量数据,我们要估计出一套房子(如2800平方英尺5个房间)的价格,此时回归算法就可以荣耀登场了。
回归算法推导
有了上面这个问题,如何来估计房子的价格呢?首先需要建立模型,一种最简单的模型就是线性模型了,写成函数就是:
其中x1x1是房子面积,x2x2是房间数,hh是对应的房子面积,θjθj就是我们需要求的系数。
对于每个具体问题,需要根据测量数据的情况来确定是否为线性。这里假设为线性模型会限制适用范围,如果房屋面积与价格不是线性关系,则此模型估计的房子价格可能会偏差很大。因此实际上这里也可以假设为其他关系(如指数、对数等),那么估计结果可能就极度不准确了,当然那也就不是线性回归,这里就不必讨论。具体为什么选择线性模型,将在后面广义回归模型中来解答。
上面公式写成向量形式,则为
其中
那么上面的测量数据可以表示为,其中的y为测量的房屋面积。这样如何根据这m个测量数据来求解参数θθ就是我们需要解决的问题了。
我们可以通过保证此组测量的预测误差最小来约束求解。代价函数为
该代价函数表达的是测量数据的均方误差和。通过最小化该代价函数,即可估计出参数θθ。前面那个1/2并没有实质意义,主要为了后面求导方便加的;实际上为1/m更具有绝对意义。
回归算法求解
如何求解上述问题?主要有梯度下降法,牛顿迭代法,最小二乘法。这里主要讲梯度下降法,因为该方法在后面使用较多,如神经网络、增强学习等求解都是使用梯度下降。
函数在沿着其梯度方向增加最快的,那么要找到该函数的最小值,可以沿着梯度的反方向来迭代寻找。也就是说,给定一个初始位置后,寻找当前位置函数减小最快的方向,加上一定步长即可到达下一位置,然后再寻找下一位置最快的方向来到达再下一个位置……,直至其收敛。上述过程用公式表达出来即如下所示:
根据上述表达式,可以求得代价函数的偏导数为:
这样,迭代规则为
这个公式即是所谓的批量梯度下降。仔细观察该公式,每次迭代都需要把m个样本全部计算一遍,如果m很大时,其迭代将非常慢,因此一种每次迭代只计算1个样本的随机梯度下降(或增量梯度下降)可以极大减少运算量,其迭代如下:
若所有样本迭代完成后还未收敛,则继续从第1个样本开始迭代。
算法实现与结果
首先使用下面代码生成一组数据,为了后续显示方便,数据为一条直线上叠加一定噪声:
View Code
数据显示出来如下图:
线性回归函数使用梯度下降求解:
View Code
测试函数:
View Code
实际上上述代码中真正涉及算法求解的不多,其他都是保存中间结果和绘图等用于调试分析的。回归结果如图,蓝色点为上面保存的数据,红色直线是回归拟合的直线:
其中每次迭代后,代价函数J的变化则如下图(考虑其范围过大,绘制的是其对数图):
可以看出,当迭代超过1000次时,代价函数已经基本不变了。梯度下降迭代过程如下左图,xy坐标分别为θ0和θ1θ0和θ1,z轴为对应θθ的代价函数值,图中心的红色小块是真实的最优值,绿色方块是每次迭代的位置,可以看到迭代过程是不断靠近最优解。由于图中绿色方块重叠过多导致绘图出来中间部分显示为黑色了,右图为局部放大的结果。
算法分析
1. 梯度下降法中,BatchSize为一次迭代使用的样本数量,当其为m时,即为批量梯度下降,为1时即是随机梯度下降。实验效果显示,BatchSize越大,迭代越耗时,但其收敛越稳定;反之,则迭代越快,而易产生振荡现象;具体可修改测试代码中的BatchSize来看实验结果。
2. 关于步长的选择。在梯度下降法中,步长的影响是非常大的,步长过小会导致收敛非常慢,过大则容易导致不收敛。上述程序中的步长是经过若干次运行修改的,换一组其他数据可能不收敛,这是该程序存在的问题,待回归算法完结后将专门来一篇分析该问题,并给出解决方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24