
df = pd.DataFrame({'专业': np.repeat(['数学与应用数学', '计算机', '统计学','物理学'], 6),
'班级': ['1班','2班','3班']*8,
'科目': ['高数', '线代'] * 12,
'平均分': [random.randint(60,100) for i in range(24)],
'及格人数': [random.randint(30,50) for i in range(24)]})
df2 = pd.pivot_table(df, index=['专业','科目'], values=['及格人数','平均分'],
aggfunc={'及格人数':np.sum,"平均分":np.mean})
df2
及格人数 | 平均分 | ||
---|---|---|---|
专业 | 科目 | ||
数学与应用数学 | 线代 | 107 | 76.000000 |
高数 | 107 | 65.000000 | |
物理学 | 线代 | 111 | 82.333333 |
高数 | 115 | 78.666667 | |
统计学 | 线代 | 107 | 71.000000 |
高数 | 122 | 74.000000 | |
计算机 | 线代 | 122 | 78.333333 |
高数 | 137 | 74.000000 |
stacked = df2.stack()
“压缩”后的DataFrame或Series(具有MultiIndex作为索引), stack() 的逆操作是unstack(),默认情况下取消最后压缩的那个级别:
堆叠stack()
,顾名思义就是把透视结果堆到一起。接下来我们把透视后堆叠的数据一步步展开unstack()
:
stacked.unstack()
及格人数 | 平均分 | ||
---|---|---|---|
专业 | 科目 | ||
数学与应用数学 | 线代 | 107.0 | 76.000000 |
高数 | 107.0 | 65.000000 | |
物理学 | 线代 | 111.0 | 82.333333 |
高数 | 115.0 | 78.666667 | |
统计学 | 线代 | 107.0 | 71.000000 |
高数 | 122.0 | 74.000000 | |
计算机 | 线代 | 122.0 | 78.333333 |
高数 | 137.0 | 74.000000 |
stacked.unstack(level=1)
科目 | 线代 | 高数 | |
---|---|---|---|
专业 | |||
数学与应用数学 | 及格人数 | 107.000000 | 107.000000 |
平均分 | 76.000000 | 65.000000 | |
物理学 | 及格人数 | 111.000000 | 115.000000 |
平均分 | 82.333333 | 78.666667 | |
统计学 | 及格人数 | 107.000000 | 122.000000 |
平均分 | 71.000000 | 74.000000 | |
计算机 | 及格人数 | 122.000000 | 137.000000 |
平均分 | 78.333333 | 74.000000 |
stacked.unstack(level=0)
专业 | 数学与应用数学 | 物理学 | 统计学 | 计算机 | |
---|---|---|---|---|---|
科目 | |||||
线代 | 及格人数 | 107.0 | 111.000000 | 107.0 | 122.000000 |
平均分 | 76.0 | 82.333333 | 71.0 | 78.333333 | |
高数 | 及格人数 | 107.0 | 115.000000 | 122.0 | 137.000000 |
平均分 | 65.0 | 78.666667 | 74.0 | 74.000000 |
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29