
import pandas as pd
d = np.array([[81, 28, 24, 25, 96],
[ 8, 35, 56, 98, 39],
[13, 39, 55, 36, 3],
[70, 54, 69, 48, 12],
[63, 80, 97, 25, 70]])
df = pd.DataFrame(data = d,
columns=list('abcde'))
df
a | b | c | d | e | |
---|---|---|---|---|---|
0 | 81 | 28 | 24 | 25 | 96 |
1 | 8 | 35 | 56 | 98 | 39 |
2 | 13 | 39 | 55 | 36 | 3 |
3 | 70 | 54 | 69 | 48 | 12 |
4 | 63 | 80 | 97 | 25 | 70 |
聚合计算是指对数据进行汇总和统计的操作。常用的聚合计算方法包括计算均值、求和、最大值、最小值、计数等。
df['a'].mean()
47.0
df['a'].sum()
235
df['a'].max()
81
df['a'].min()
8
df['a'].count()
5
df['a'].median() # 中位数
63.0
df['a'].var() #方差
1154.5
df['a'].skew() # 偏度
-0.45733193928530436
df['a'].kurt() # 峰度
-2.9999915595685325
df['a'].cumsum() # 累计求和
0 81
1 89
2 102
3 172
4 235
Name: a, dtype: int64
df['a'].cumprod() # 累计求积
0 81
1 648
2 8424
3 589680
4 37149840
Name: a, dtype: int64
df['a'].diff() # 差分
0 NaN
1 -73.0
2 5.0
3 57.0
4 -7.0
Name: a, dtype: float64
df['a'].mad() # 平均绝对偏差
29.2
df.sum(axis=0) # 按列求和汇总到最后一行
a 235
b 236
c 301
d 232
e 220
dtype: int64
df.sum(axis=1) # 按行求和汇总到最后一列
0 254
1 236
2 146
3 253
4 335
dtype: int64
df.describe() # 描述性统计
a | b | c | d | e | |
---|---|---|---|---|---|
count | 5.000000 | 5.000000 | 5.000000 | 5.000000 | 5.000000 |
mean | 47.000000 | 47.200000 | 60.200000 | 46.400000 | 44.000000 |
std | 33.977934 | 20.656718 | 26.395075 | 30.369392 | 39.083244 |
min | 8.000000 | 28.000000 | 24.000000 | 25.000000 | 3.000000 |
25% | 13.000000 | 35.000000 | 55.000000 | 25.000000 | 12.000000 |
50% | 63.000000 | 39.000000 | 56.000000 | 36.000000 | 39.000000 |
75% | 70.000000 | 54.000000 | 69.000000 | 48.000000 | 70.000000 |
max | 81.000000 | 80.000000 | 97.000000 | 98.000000 | 96.000000 |
对整个DataFrame批量使用多个聚合函数
df.agg(['sum', 'mean','max','min','median'])
a | b | c | d | e | |
---|---|---|---|---|---|
sum | 235.0 | 236.0 | 301.0 | 232.0 | 220.0 |
mean | 47.0 | 47.2 | 60.2 | 46.4 | 44.0 |
max | 81.0 | 80.0 | 97.0 | 98.0 | 96.0 |
min | 8.0 | 28.0 | 24.0 | 25.0 | 3.0 |
median | 63.0 | 39.0 | 56.0 | 36.0 | 39.0 |
对DataFramed的某些列应用不同的聚合函数
df.agg({'a':['max','min'],'b':['sum','mean'],'c':['median']})
a | b | c | |
---|---|---|---|
max | 81.0 | NaN | NaN |
min | 8.0 | NaN | NaN |
sum | NaN | 236.0 | NaN |
mean | NaN | 47.2 | NaN |
median | NaN | NaN | 56.0 |
注意其中applymap函数在新版已经被弃用,这里的案例是基于pandas=1.3.2写的
在Python中如果想要对数据使用函数,可以借助apply(),applymap(),map()对数据进行转换,括号里面可以是直接函数式,或者自定义函数(def)或者匿名函数(lambda)
1、当我们要对数据框(DataFrame)的数据进行按行或按列操作时用apply()
df.apply(lambda x :x.max()-x.min(),axis=1)
#axis=1,表示按行对数据进行操作
#从下面的结果可以看出,我们使用了apply函数之后,系统自动按行找最大值和最小值计算,每一行输出一个值
0 72
1 90
2 52
3 58
4 72
dtype: int64
df.apply(lambda x :x.max()-x.min(),axis=0)
#默认参数axis=0,表示按列对数据进行操作
#从下面的结果可以看出,我们使用了apply函数之后,系统自动按列找最大值和最小值计算,每一列输出一个值
a 73
b 52
c 73
d 73
e 93
dtype: int64
2、当我们要对数据框(DataFrame)的每一个数据进行操作时用applymap(),返回结果是DataFrame格式
df.applymap(lambda x : 1 if x>60 else 0)
#从下面的结果可以看出,我们使用了applymap函数之后,
#系统自动对每一个数据进行判断,判断之后输出结果
a | b | c | d | e | |
---|---|---|---|---|---|
0 | 1 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 1 | 0 |
2 | 0 | 0 | 0 | 0 | 0 |
3 | 1 | 0 | 1 | 0 | 0 |
4 | 1 | 1 | 1 | 0 | 1 |
3、当我们要对Series的每一个数据进行操作时用map()
df['a'].map(lambda x : 1 if x>60 else 0)
0 1
1 0
2 0
3 1
4 1
Name: a, dtype: int64
总结:
apply()
函数可以在DataFrame或Series上应用自定义函数,可以在行或列上进行操作。
applymap()
函数只适用于DataFrame,可以在每个元素上应用自定义函数。
map()
函数只适用于Series,用于将每个元素映射到另一个值。
以上是数学运算部分,包括聚合计算、批量应用聚合函数,以及对Series和DataFrame进行批量映射,接下来我们来看如何对数据进行合并拼接
这里分享一个你一定用得到的小程序——CDA数据分析师考试小程序。 它是专为CDA数据分析认证考试报考打造的一款小程序。可以帮你快速报名考试、查成绩、查证书、查积分,通过该小程序,考生可以享受更便捷的服务。 扫码加入CDA小程序,与圈内考生一同学习、交流、进步!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25