
还以为你被上节课的内容唬住了~终于等到你,还好没放弃!
本节我们将说明两个问题:总体均值 的区间估计和总体比例 的区间估计。
区间估计经常用于质量控制领域来检测生产过程是否正常运行或者在“控制之中” ,也可以用来监控互联网领域各类数据指标是否在正常区间。
大样本的情况下
已知,
未知,
小样本的情况下
另外补充一个公式,样本量 这个了解就好,大部分情况下是不缺数据的,尽可能选数据量稍大些的数据。
把以上过程编写成Python的自定义函数:
import numpy as np
import scipy.stats
from scipy import stats as sts
def mean_interval(mean=None, sigma=None,std=None,n=None,confidence_coef=0.95):
"""
mean:样本均值
sigma: 总体标准差
std: 样本标准差
n: 样本量
confidence_coefficient:置信系数
confidence_level:置信水平 置信度
alpha:显著性水平
功能:构建总体均值的置信区间
"""
alpha = 1 - confidence_coef
z_score = scipy.stats.norm.isf(alpha / 2) # z分布临界值
t_score = scipy.stats.t.isf(alpha / 2, df = (n-1) ) # t分布临界值
if n >= 30:
if sigma != None:
me = z_score * sigma / np.sqrt(n)
print("大样本,总体 sigma 已知:z_score:",z_score)
elif sigma == None:
me = z_score * std / np.sqrt(n)
print("大样本,总体 sigma 未知 z_score",z_score)
lower_limit = mean - me
upper_limit = mean + me
if n < 30 :
if sigma != None:
me = z_score * sigma / np.sqrt(n)
print("小样本,总体 sigma 已知 z_score * sigma / np.sqrt(n) n z_score = ",z_score)
elif sigma == None:
me = t_score * std / np.sqrt(n)
print("小样本,总体 sigma 未知 t_score * std / np.sqrt(n) n t_score = ",t_score)
print("t_score:",t_score)
lower_limit = mean - me
upper_limit = mean + me
return (round(lower_limit, 1), round(upper_limit, 1))
某网站流量UV数据如下[52,44,55,44,45,59,50,54,62,46,54,42,60,62,43,42,48,55,57,56]
,我们研究一下该网站的总体流量uv均值,我们先把数据放进来
import numpy as np
data = np.array([52,44,55,44,45,59,50,54,62,46,54,42,60,62,43,42,48,55,57,56])
计算一下均值为:
x_bar = data.mean()
x_bar
# 51.5
样本标准差为:
x_std = sts.tstd(data,ddof = 1) # ddof=1时,分母为n-1;ddof=0时,分母为n
x_std
# 6.840283158189472
进行区间估计:
mean_interval(mean=x_bar, sigma=None,std= x_std, n=n, confidence_coef=0.95)
输出结果:
小样本,总体 sigma 未知 t_score * std / np.sqrt(n)
t_score = 2.093024054408263
(48.3, 54.7)
于是我们有95%的把握,该网站的流量uv介于 [48, 55]之间。
值得一提的是,上面这个案例的数据是实际上是公众号山有木兮水有鱼 的按天统计阅读量……有人可能要说了,你这数据也太惨了,而且举个案例都是小样本。我想说,小样本的原因是这新号一共发了也没几天,至于数量低,你帮忙动动小手转发转发,这数据也就高了~希望下次举例的时候这个能变成大样本,均值怎么着也得个千儿八百的,感谢感谢!
其中样本量
def proportion_interval(p=None, n=None, confidence_coef =0.95):
"""
p: 样本比例
n: 样本量
confidence_coef: 置信系数
功能:构建总体比例的置信区间
"""
alpha = 1 - confidence_coef
z_score = scipy.stats.norm.isf(alpha / 2) # z分布临界值
me = z_score * np.sqrt((p * (1 - p)) / n)
lower_limit = p - me
upper_limit = p + me
return (round(lower_limit, 3), round(upper_limit, 3))
下期将为大家带来《Python统计学极简入门》之假设检验
这里分享一个你一定用得到的小程序——CDA数据分析师考试小程序。
它是专为CDA数据分析认证考试报考打造的一款小程序。可以帮你快速报名考试、查成绩、查证书、查积分,通过该小程序,考生可以享受更便捷的服务。
扫码加入CDA小程序,与圈内考生一同学习、交流、进步!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27