京公网安备 11010802034615号
经营许可证编号:京B2-20210330
为何人人都在谈大数据?
某日,一饭店电话铃声响起,客服妹子接起电话。
妹子:你好,这里是XX饭店,请问有什么需要为您服务的呢?
顾客:你好,我想要一份……
妹子:女士,麻烦先把您的会员卡号告诉我一下。
顾客:261478941
妹子:李女士,你好,您是住在海淀区苏州街XX小区23号楼15层1503室,您的电话是186XXXXXX.您家固定电话5698xxxx
顾客:你是怎么知道的......
妹子:女士,因为我们联机到CRM系统。
顾客:我想要一份小龙虾……
妹子:女士,小龙虾不适合您。
顾客:为什么?
妹子:因为据您的医疗记录显示,您对小龙虾是过敏的....
正当时 大数据告诉你不能说的秘密
从上面的对话可以看出,从国防安全到衣食住行,大数据早已渗透到我们社会生活的方方面面。在现如今的大数据时代,我们变得越来越透明。通过网络,我们支付会产生数据;我们打车,会产生数据;我们聊天,会产生数据;就连我们订餐,都会产生数据。我们赖以生存的手机、电脑上都存留着我们的痕迹。信息时代,大数据成为了新的生产要素。
马云曾经在一次演讲中提到,未来的时代将不是IT时代,而是DT时代,DT就是Data Technology数据科技,显示大数据对于阿里巴巴集团来说举足轻重。
到底大数据是什么?
最早提出大数据时代到来的是麦肯锡:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。”
这里,可以引用3个比较常用的大数据定义:
1、需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。—— Gartner
2、海量的数据规模(Volume)、快速的数据流转和动态的数据体系(Velocity)、多样的数据类型(Variety)、巨大的数据价值(Value)。—— IDC
3、或称巨量数据、海量数据、大资料,指所涉及的数据量规模巨大到无法通过人工,在合理时间内达到截取、管理、处理、并整理成为人类所能解读的信息。—— Wiki
要理解大数据这一概念,可以先从"大"入手,"大"是指数据规模,大数据一般指在10TB(1TB=1024GB)规模以上的数据量。大数据同过去的海量数据有所区别,其基本特征可以用4个V来总结。
大数据的4V特点:
Volume(大量):从TB级别,跃升到PB级别。
Velocity(高速):1秒定律。最后这一点也是和传统的数据挖掘技术有着本质的不同。物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式。
Variety(多样):如网络日志、视频、图片、地理位置信息等。
Value(价值):以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。
有人把数据比喻为蕴藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是赢得竞争的关键。
大数据的价值体现在:对大量消费者提供产品或服务的企业可以利用大数据进行精准营销;做小而美模式的中小微企业可以利用大数据做服务转型;面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值
大数据时代 隐私成最大挑战
对纯理论者来说,大数据是指超过传统数据库能力的数据集软件。对于不断增长的人群来说,大数据是用来快速进行预测分析。对其他人来说,大数据意味着一个由1和0组成的惊人的数字组合。不过,大数据的类型大致可分为以下几方面:
1、传统企业数据(Traditional enterprise data):包括传统的ERP数据,库存数据以及账目数据等。
2、机器和传感器数据(Machine-generated /sensor data):包括呼叫记录、智能仪表、工业设备传感器及交易数据等
3、社交数据(Social data):包括用户行为记录、反馈数据等,比如微信、QQ这样的社交媒体平台。
随着大数据的应用范围不断扩大,越来越多的公司开始部署大数据战略。同时,大数据技术也使得商业发展的速度更快、效率更高。通过大数据技术,企业可以更轻松地获取信息,以便进行更准确地决策。未来,大数据发展又该如何呢?
1、隐私问题将成最大挑战
据一项调查机构显示,到2018年,近50%的企业都将面临隐私泄露问题。大数据时代,解决用户隐私泄露问题,就是解决大数据发展与使用的问题。
2、人工智能将广泛应用
在过去的一年中,我们亲眼见证了人工智能的爆发:无人驾驶汽车试驾成功、AlphaGo围棋获胜。随着人工智能技术日益成熟,未来公司企业将很大程度上依赖于这项技术。
3、将推出更多分析工具
随着数据量的不断增长,数据分析方法也将进一步提高。虽然SQL依然会是数据分析的标准方法,但是新兴分析工具也不可小觑。Spark,作为大数据时代下的一个快速处理数据分析工作的框架,如Google,Facebook等现已纷纷转向Spark框架。
总之,大数据带来了前所未有的机遇,让我们做好准备,迎接新一年的大数据元年。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28