京公网安备 11010802034615号
经营许可证编号:京B2-20210330
机器学习基础—梯度下降法(Gradient Descent)
梯度下降法。一开始只是对其做了下简单的了解。随着内容的深入,发现梯度下降法在很多算法中都用的到,除了之前看到的用来处理线性模型,还有BP神经网络等。于是就有了这篇文章。
本文主要讲了梯度下降法的两种迭代思路,随机梯度下降(Stochastic gradient descent)和批量梯度下降(Batch gradient descent)。以及他们在python中的实现。
梯度下降法
梯度下降是一个最优化算法,通俗的来讲也就是沿着梯度下降的方向来求出一个函数的极小值。那么我们在高等数学中学过,对于一些我们了解的函数方程,我们可以对其求一阶导和二阶导,比如说二次函数。可是我们在处理问题的时候遇到的并不都是我们熟悉的函数,并且既然是机器学习就应该让机器自己去学习如何对其进行求解,显然我们需要换一个思路。因此我们采用梯度下降,不断迭代,沿着梯度下降的方向来移动,求出极小值。
此处我们还是用coursea的机器学习课中的案例,假设我们从中介那里拿到了一个地区的房屋售价表,那么在已知房子面积的情况下,如何得知房子的销售价格。显然,这是一个线性模型,房子面积是自变量x,销售价格是因变量y。我们可以用给出的数据画一张图。然后,给出房子的面积,就可以从图中得知房子的售价了。
现在我们的问题就是,针对给出的数据,如何得到一条最拟合的直线。
对于线性模型,如下。
h(x)是需要拟合的函数。
J(θ)称为均方误差或cost function。用来衡量训练集众的样本对线性模式的拟合程度。
m为训练集众样本的个数。
θ是我们最终需要通过梯度下降法来求得的参数。
\[h(\theta)=\sum_{j=0}^n \theta_jx_j \\ J(\theta)=\frac1{2m}\sum_{i=0}^m(y^i-h_\theta(x^i))^2\]
接下来的梯度下降法就有两种不同的迭代思路。
批量梯度下降(Batch gradient descent)
现在我们就要求出J(θ)取到极小值时的\(θ^T\)向量。之前已经说过了,沿着函数梯度的方向下降就能最快的找到极小值。
计算J(θ)关于\(\theta^T\)的偏导数,也就得到了向量中每一个\(\theta\)的梯度。
\[ \begin{align} \frac{\partial J(\theta)}{\partial\theta_j} & = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i)) \frac{\partial}{\partial\theta_j}(y^i-h_\theta(x^i)) \\ & = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i)) \frac{\partial}{\partial\theta_j}(\sum_{j=0}^n\theta_jx_j^i-y^i) \\ & = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i))x^i_j \end{align} \]
沿着梯度的方向更新参数θ的值
\[ \theta_j := \theta_j + \alpha\frac{\partial J(\theta)}{\partial\theta_j} :=\theta_j - \alpha\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i))x^i_j \]
迭代直到收敛。
可以看到,批量梯度下降是用了训练集中的所有样本。因此在数据量很大的时候,每次迭代都要遍历训练集一遍,开销会很大,所以在数据量大的时候,可以采用随机梯度下降法。
随机梯度下降(Stochastic gradient descent)
和批量梯度有所不同的地方在于,每次迭代只选取一个样本的数据,一旦到达最大的迭代次数或是满足预期的精度,就停止。
可以得出随机梯度下降法的θ更新表达式。
\[ \theta_j:=\theta_j - \alpha\frac1m(y^i-h_\theta(x^i))x^i_j \]
迭代直到收敛。
两种迭代思路的python实现
下面是python的代码实现,现在仅仅是用纯python的语法(python2.7)来实现的。随着学习的深入,届时还会有基于numpy等一些库的实现,下次补充。
#encoding:utf-8
#随机梯度
def stochastic_gradient_descent(x,y,theta,alpha,m,max_iter):
"""随机梯度下降法,每一次梯度下降只使用一个样本。
:param x: 训练集种的自变量
:param y: 训练集种的因变量
:param theta: 待求的权值
:param alpha: 学习速率
:param m: 样本总数
:param max_iter: 最大迭代次数
"""
deviation = 1
iter = 0
flag = 0
while True:
for i in range(m): #循环取训练集中的一个
deviation = 0
h = theta[0] * x[i][0] + theta[1] * x[i][1]
theta[0] = theta[0] + alpha * (y[i] - h)*x[i][0]
theta[1] = theta[1] + alpha * (y[i] - h)*x[i][1]
iter = iter + 1
#计算误差
for i in range(m):
deviation = deviation + (y[i] - (theta[0] * x[i][0] + theta[1] * x[i][1])) ** 2
if deviation <EPS or iter >max_iter:
flag = 1
break
if flag == 1 :
break
return theta, iter
#批量梯度
def batch_gradient_descent(x,y,theta,alpha,m,max_iter):
"""批量梯度下降法,每一次梯度下降使用训练集中的所有样本来计算误差。
:param x: 训练集种的自变量
:param y: 训练集种的因变量
:param theta: 待求的权值
:param alpha: 学习速率
:param m: 样本总数
:param max_iter: 最大迭代次数
"""
deviation = 1
iter = 0
while deviation > EPS and iter < max_iter:
deviation = 0
sigma1 = 0
sigma2 = 0
for i in range(m): #对训练集中的所有数据求和迭代
h = theta[0] * x[i][0] + theta[1] * x[i][1]
sigma1 = sigma1 + (y[i] - h)*x[i][0]
sigma2 = sigma2 + (y[i] - h)*x[i][1]
theta[0] = theta[0] + alpha * sigma1 /m
theta[1] = theta[1] + alpha * sigma2 /m
#计算误差
for i in range(m):
deviation = deviation + (y[i] - (theta[0] * x[i][0] + theta[1] * x[i][1])) ** 2
iter = iter + 1
return theta, iter
#运行 为两种算法设置不同的参数
# data and init
matrix_x = [[2.1,1.5],[2.5,2.3],[3.3,3.9],[3.9,5.1],[2.7,2.7]]
matrix_y = [2.5,3.9,6.7,8.8,4.6]
MAX_ITER = 5000
EPS = 0.0001
#随机梯度
theta = [2,-1]
ALPHA = 0.05
resultTheta,iters = stochastic_gradient_descent(matrix_x, matrix_y, theta, ALPHA, 5, MAX_ITER)
print 'theta=',resultTheta
print 'iters=',iters
#批量梯度
theta = [2,-1]
ALPHA = 0.05
resultTheta,iters = batch_gradient_descent(matrix_x, matrix_y, theta, ALPHA, 5, MAX_ITER)
print 'theta=',resultTheta
print 'iters=',iters
运行结果
ALPHA = 0.05ALPHA = 0.05
theta= [-0.08445285887795494, 1.7887820818368738]
iters= 1025
theta= [-0.08388979324755381, 1.7885951009289043]
iters= 772
[Finished in 0.5s]
ALPHA = 0.01
theta= [-0.08387216503392847, 1.7885649678753883]
iters= 3566
theta= [-0.08385924864202322, 1.788568071697816]
iters= 3869
[Finished in 0.1s]
ALPHA = 0.1
theta= [588363545.9596066, -664661366.4562845]
iters= 5001
theta= [-0.09199523483489512, 1.7944581778450577]
iters= 516
[Finished in 0.2s]
总结
梯度下降法是一种最优化问题求解的算法。有批量梯度和随机梯度两种不同的迭代思路。他们有以下的差异:
批量梯度收敛速度慢,随机梯度收敛速度快。
批量梯度是在θ更新前对所有样例汇总误差,而随机梯度下降的权值是通过考查某个样本来更新的
批量梯度的开销大,随机梯度的开销小。数据分析师培训
使用梯度下降法时需要寻找出一个最好的学习效率。这样可以使得使用最少的迭代次数达到我们需要的精度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27