京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析认证的考试难度和准备时间因个人背景和所选认证的不同而有所差异。以下是一些流行的数据分析认证及其相关信息:
1. Google 数据分析专业证书:这个证书适合初学者,涵盖了电子表格、数据清理、数据分析、数据可视化、SQL、R、Tableau 等技能。考试难度中等,建议的学习时间是每周10小时,持续约6个月,费用通过 Coursera 是每月39美元。考试准备通常需要几个月的时间,具体取决于个人的基础知识和学习效率。
2. IBM 数据分析师专业证书:这个认证同样适合初学者,包括 Microsoft Excel、Python、数据分析、数据可视化、SQL 等技能。学习周期约为11个月,每周建议学习3小时,通过 Coursera 的费用是每月39美元。考试费用为165美元,考试难度中等。
3. Microsoft 认证:数据分析师联合:这个认证适合初学者和初级专业人士,包括数据准备、数据建模、数据可视化、数据分析等技能。学习周期同样约为11个月,每周建议学习3小时。考试费用为165美元,考试难度中等。
4. SAS 认证人工智能和机器学习专家:这个认证适合希望展示使用开源和 SAS 工具进行 AI 和分析才能的个人。考试包括机器学习、自然语言处理、计算机视觉和模型预测优化等技能。考试难度较高,通常需要有相关领域的深入知识和实践经验。
5. CDA 数据分析师认证:CDA 认证分为三个等级,涉及多个行业和岗位。考试内容包括客观选择题和案例操作题,考试时间从120分钟到210分钟不等。考试难度因等级而异,准备时间也不同,一般来说,建议考生根据考试大纲和提供的教材进行系统学习,并通过模拟题库进行练习。
6. TensorFlow 开发者认证:这个认证适合希望证明使用 TensorFlow 构建深度学习模型能力的个人。考试难度较高,涉及多个深度学习领域。考试准备通常需要有 TensorFlow 和深度学习项目的实践经验,以及对相关概念的深入理解。
总的来说,考试难度和准备时间取决于个人的基础知识、学习能力和所选认证的深度。建议考生根据自己的情况和目标选择合适的认证,并制定相应的学习计划。通常,对于初学者来说,可能需要几个月的时间来准备,而对于已经有一定基础的专业人士,准备时间可能会短一些。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20