京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代下,数据使用与隐私保护的博弈
信息时代,网络服务商提供的软件(APP)和网站,所收集的无数信息成就了海量的大数据,商家和科技公司在通过大数据服务于每个人的同时,既可赚取大量的利润,同时也必然涉及另一个问题,有意和无意泄露个人隐私。如何在大数据时代保护个人隐私,在中国显得特别严重和紧迫。
主要表现为,商家以隐瞒和挟持的手段迫使用户放弃隐私保护。即便一些商家推出表面的隐私协议,要求用户签字,也表现为霸王条款。用户同意才能使用其软件,不同意就不能使用,而且只要使用了网站的任一服务,就表示使用者同意商家的隐私权政策。但这个政策只是商家个人的定义。
在信息时代,一方面,每个人的信息汇聚为大数据时当然不仅是为商家带来财富,也为公共利益,如攻克疾病、研发药物和反恐防恐提供了方便。根据Wikibon的报告,美国大数据产业的市场规模在2017年将达到500亿美元,这其中就包括医药公司利用基因检测软件分享个人数据,并以此为基础研发药物和新产品获取的利润。在中国,每年利用大数据获得的利益也早就超过100亿元人民币。正在召开的“两会”上,百度董事长兼首席执行官李彦宏的第一个提案就是“利用人工智能和大数据技术,帮助解决走失儿童问题”,这也是利用大数据推进和支持公益活动的具体体现。
即便大数据能解决人们生活和发展中的许多问题,而且也将是未来社会发展的一个基石和动力,但并不意味着个人隐私不需要保护。恰恰相反,大数据时代更需要保护个人隐私,才能让信息时代的技术最大化地有利于每个个体,也体现社会的公平和公正。
不过,在中国,保护个人隐私的第一个难题是,如何定义个人隐私,以及如何保护大数据涉及的隐私。中国的法律当然提及了公民个人隐私,并提出,“公民的个人数据不得非法搜集、传输、处理和利用”。但是, 中国的《民法通则》并未将隐私权作为一项独立人格权利加以保护,在隐私权方面,中国的现行立法并不清晰和明确。正因为如此,众多的网络服务商才可以在其软件和网络服务中强行以商家的规则来搜集并使用公民的隐私信息。
对此,应当根据中国的具体情况和参照发达国家对大数据时代提出的公民隐私权的解释,进行立法,以兼顾大数据的合理使用和个人隐私的保护,至少在二者之间寻求一种平衡。
美国对隐私权的规定大致有:公民个人享有秘密或者寻求隐匿的权利,同时保护公民个体的隐私权从住宅扩大到所有私人谈话与通讯过程;公民个人有匿名表达权,特别在政治意见领域;禁止某些运用公民私人信息的消极结果,如防止基因检测信息泄漏而遭到歧视;在私人信息脱离本人排他所有权之后,控制他人接触这些信息;个人有做出私人决定而不受政府干涉的权利,主要包括个人的健康、生育和性生活领域。
美国保护个人隐私既有传统,又看重现实的信息技术发展现状。1974年美国通过了《隐私法案》,2012年2月奥巴马政府又宣布推动《消费者隐私权利法案》,2015年3月美国白宫公布了《2015年消费者隐私权法案》草案。此外,针对上述公民隐私权利的内容也有许多具体的法律,如2008年出台的《基因信息非歧视法案》。
具体到个人隐私权利保护草案,也是一种妥协的结果。一方面,草案关注保护个人隐私,另一方面,又给予商家很多利用个人信息或大数据的权利。例如,草案的一个基本规定是,数据持有商必须要在透明度报告中提供更多关于其用户数据收集的信息;同时,个人访问商家储存的个人数据拥有更多的权利。但另一方面,草案也规定,商家可自行制定隐私政策。而且,如果消费者的要求被商家裁定为无理取闹的行为,商家可以选择无视这些要求。
对此草案,美国最大的信息技术公司微软表态称,微软支持《2015年消费者隐私权法案》,但并不意味着它完全认同法案里的每一项条款。微软首席隐私官布兰登•林奇(Brendon Lynch)认为,对于草案有些人反对,有些人赞同,但不管怎样这都是好消息,因为人们开始为之对话了。
从发达国家的情况看,大数据时代的信息利用和个人隐私保护一直存在博弈,中国现在的情况还达不到这一步,只是处于商家和权力机构强势获取个人信息并加以利用的阶段,公民隐私权的承认和保护还处于空白期,这种不平衡的状况也必将造成广泛的社会负面影响。对此,除了公众要将诉求通过两会代表传达到立法机构外,还需要政府的干预,才能形成大数据的合理应用与个人隐私有效保护的双赢结局。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04