
最近很多小伙伴在问:数据分析师是有争议的岗位吗?它薪资高吗?还是说它很难?咱们一个一个说。
任何人力资源在市场上流动的水平也是遵循经济学原理的。供不应求,涨价。供过于求,低价。数据分析师的薪资水平确实是高于其他行业。
猎聘对2022年数字化人才薪资进行分析,发现以数据分析师、大数据分析师为代表的数字人才平均年薪远高于全行业,人才年薪以10-20万为主。近4年来,数字人才平均年薪远高于全行业,且薪酬逐年增加,2022年比2019年增长11.5%。
世界经济论坛《2023年未来就业报告》显示,未来5年内增长最快的十大岗位包括了数据分析师和科学家、数字化转型专业人员。
下面是不同薪资水平的分析师大致的要求:
1. 8K的初级数据分析师
大部分是应届生或者转行的朋友。大公司的最基础岗位,比如数据专员。或者中小公司的数据分析岗位工作内容:
1、监控数据,取数
2、给业务方支持
技能要求工具要求掌握:SQL、Excel、Python、可视化工具Tableau/PowerBI有些公司的要求只有Excel以及可视化工具,这些小伙伴可能会觉得自己是“表哥表姐”,“取数机器”, "SQL Boy"。
再往上一个级别发展,就是中级的岗位,如果一直停留在初级数据分析师的阶段,只是会用工具、会写代码的伪科学家,基本就是业务团队的背锅侠、工具人,存在感低。
2. 15K的中级数据分析师
到了中级,要求的综合能力肯定是非常强的,工具技能要求也会很高。
比如埋点 AB 测试,统计学的应用以及业务能力,大家也能看到,一些大厂的面试真题都会针对于业务方面内容去来进行要求,比如销售额分析,用户画像,DAU 产品分析,用户路径等,有的销售团队可能会问动销率下降怎么分析,这些更偏向于业务侧的方面提问。并且更需要的事情是你要做一些专题性的分析。
做专题分析也是会给你安排一条业务线,通过做这条业务线的 BP 有效去针对于日常的目标进度以及指标下降问题来给业务方提供支持,并且给他们一些取数的支持,让他们更好地做分析和可视化。
如果想要做出很出彩的分析洞察,需要很懂业务,需要能明晰业务的痛点在哪里,而这个痛点用数据分析正好能解决。
3. 25K 的数据科学界
一般都是5 年以上工作经验,属于是数据分析负责人下面的一些中坚力量。在 25K 的等级上面,需要要求数据分析具备从 0 到 1 的能力。摸底分析针对于业务线细节拆分的能力,能非常理解业务的每个流程,关键的节点、目标拆分、对应指标以及对应指标的影响因素,能有效的去来支持业务方。跟业务方要讨论甚至争吵,甚至要告诉业务方现在应该争取什么样的资源,应该如何去来迭代等等。
对于高级数据分析师,如果想要获得更大的晋升,除了在专题领域,在从 0 到 1 的数据、产品、指标体系,各项目经验要丰富起来,同时还要有担当。这个担当就是帮助你的leader,帮助你的主管,承担起来更大的责任,减少他的思考,减少他的负担,放心地把业务线交给你。
很多大公司高级数据分析师不是一般的卷。这卷是怎么卷的?主要就是一些模型的构建,用到统计学方法支持。
有些这个级别的数据分析师也要做上传下达的工作,但这个上传下达除了领导和团队之外,还有跟运营、产品、算法之间的关系。很多公司会需要算法与数据分析师合作,找到一些模型策略,迭代算法,同时支持运营。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21