
最近很多小伙伴在问:数据分析师是有争议的岗位吗?它薪资高吗?还是说它很难?咱们一个一个说。
任何人力资源在市场上流动的水平也是遵循经济学原理的。供不应求,涨价。供过于求,低价。数据分析师的薪资水平确实是高于其他行业。
猎聘对2022年数字化人才薪资进行分析,发现以数据分析师、大数据分析师为代表的数字人才平均年薪远高于全行业,人才年薪以10-20万为主。近4年来,数字人才平均年薪远高于全行业,且薪酬逐年增加,2022年比2019年增长11.5%。
世界经济论坛《2023年未来就业报告》显示,未来5年内增长最快的十大岗位包括了数据分析师和科学家、数字化转型专业人员。
下面是不同薪资水平的分析师大致的要求:
1. 8K的初级数据分析师
大部分是应届生或者转行的朋友。大公司的最基础岗位,比如数据专员。或者中小公司的数据分析岗位工作内容:
1、监控数据,取数
2、给业务方支持
技能要求工具要求掌握:SQL、Excel、Python、可视化工具Tableau/PowerBI有些公司的要求只有Excel以及可视化工具,这些小伙伴可能会觉得自己是“表哥表姐”,“取数机器”, "SQL Boy"。
再往上一个级别发展,就是中级的岗位,如果一直停留在初级数据分析师的阶段,只是会用工具、会写代码的伪科学家,基本就是业务团队的背锅侠、工具人,存在感低。
2. 15K的中级数据分析师
到了中级,要求的综合能力肯定是非常强的,工具技能要求也会很高。
比如埋点 AB 测试,统计学的应用以及业务能力,大家也能看到,一些大厂的面试真题都会针对于业务方面内容去来进行要求,比如销售额分析,用户画像,DAU 产品分析,用户路径等,有的销售团队可能会问动销率下降怎么分析,这些更偏向于业务侧的方面提问。并且更需要的事情是你要做一些专题性的分析。
做专题分析也是会给你安排一条业务线,通过做这条业务线的 BP 有效去针对于日常的目标进度以及指标下降问题来给业务方提供支持,并且给他们一些取数的支持,让他们更好地做分析和可视化。
如果想要做出很出彩的分析洞察,需要很懂业务,需要能明晰业务的痛点在哪里,而这个痛点用数据分析正好能解决。
3. 25K 的数据科学界
一般都是5 年以上工作经验,属于是数据分析负责人下面的一些中坚力量。在 25K 的等级上面,需要要求数据分析具备从 0 到 1 的能力。摸底分析针对于业务线细节拆分的能力,能非常理解业务的每个流程,关键的节点、目标拆分、对应指标以及对应指标的影响因素,能有效的去来支持业务方。跟业务方要讨论甚至争吵,甚至要告诉业务方现在应该争取什么样的资源,应该如何去来迭代等等。
对于高级数据分析师,如果想要获得更大的晋升,除了在专题领域,在从 0 到 1 的数据、产品、指标体系,各项目经验要丰富起来,同时还要有担当。这个担当就是帮助你的leader,帮助你的主管,承担起来更大的责任,减少他的思考,减少他的负担,放心地把业务线交给你。
很多大公司高级数据分析师不是一般的卷。这卷是怎么卷的?主要就是一些模型的构建,用到统计学方法支持。
有些这个级别的数据分析师也要做上传下达的工作,但这个上传下达除了领导和团队之外,还有跟运营、产品、算法之间的关系。很多公司会需要算法与数据分析师合作,找到一些模型策略,迭代算法,同时支持运营。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07