京公网安备 11010802034615号
经营许可证编号:京B2-20210330
很多小伙伴都计划年后换工作,为了帮助各位学习数据分析的小伙伴们成功拿到offer!本期给大家整理了一些数据分析面试时的高频问题,希望大家积极点赞收藏加关注,一起冲鸭~
1、APP近期上线了一个拉新活动,并在各个渠道进行了推广投放,如何评估活动效果?
【参考答案】
如果要对一个活动效果进行分析,无非是要回答以下3个问题:
(1)活动效果怎么样?要不要继续做?
(2)如果可以继续做,活动的做的好的方面是哪些?问题或者瓶颈环节在哪?
(3)针对问题环节的改进方案是什么?
具体展开来讲,可以从以下几个方面:
(1)活动关键指标达成分析
活动关键核心指标达成情况,比如拉新多少用户,达成多少GMV?ROI如何?
(2)活动关键流程漏斗分析
活动的关键流程是什么?以及各个流程的漏斗分析,定位问题发生的环节。
(3)活动的渠道、用户分析
活动在哪些渠道推送?活动推送给哪些用户?用户画像是啥样的?各渠道用户的质量/ROI如何?
(4)活动策略、节奏分析
活动玩法的裂变效果如何?利益点是否有吸引力?活动整个过程节奏把控如何,前期预热、中期爆发和尾期是否过短/过长,运营应该在何时进行适当干预。
2、业务场景题,如何分析次日留存率下降的问题
【参考答案】
业务问题关键是问对问题,然后才是拆解问题去解决。
(1)两层模型
从用户画像、渠道、产品、行为环节等角度细分,明确到底是哪里的次日留存率下降了
(2)指标拆解
次日留存率 = Σ 次日留存数 / 今日获客人数
(3)原因分析
内部:运营活动、产品变动、技术故障、设计漏洞(如产生可以撸羊毛的设计)
外部:竞品、用户偏好、节假日、社会事件(如产生舆论)
3、谈谈RFM用户模型
【参考答案】
RFM模型是客户关系管理(CRM)中一种被广泛使用的营销模型,它是衡量客户价值和客户创利能力的重要工具和手段。
RFM模型主要通过3个指标来描述一个客户的价值:
✅ 最近一次消费时间(Recency),缩写为R
✅ 消费频次(Frequency),缩写为F
✅ 消费金额(Monetary),缩写为M
在具体的应用中,一般是通过R、F、M这3项值将买家进行分层,卖家可以对不同层级的用户采取不同的营销方式~
利用RFM模型划分用户层级,可以进行客户细分、寻找目标客户:
⭕重要价值客户,RFM都很大,优质客户,需要保持
⭕重要发展客户,低活高购高价值,交易金额和交易次数大,但最近无交易。需要发展
⭕重要保持客户,高活低购高价值,交易金额大贡献度高,且最近有交易。需要重点识别
⭕重要挽留客户,低活低购高价值:交易金额大,潜在的有价值客户,需要挽留、促活。
这一模型的【优点】:
✔能够快速对某段时间内的付费用户做用户分类,响应快速的业务需求;
✔能直观了解用户消费的质量,短时间监控大客户的流失情况,及时做出挽回应对措施;
✔能及时发现新的大客户,比如频次低但额度大的用户。
4、什么是假设检验?
【参考答案】
参数估计和假设检验是统计推断的两个组成部分,它们都是利用样本对总体进行某种推断,但推断的角度不同。
(1)参数估计讨论的是用样本估计总体参数的方法,总体参数μ在估计前是未知的。
(2)而在假设检验中,则是先对μ的值提出一个假设,然后利用样本信息去检验这个假设是否成立。
5、 置信度、置信区间
【参考答案】
置信区间是我们所计算出的变量存在的范围,水平就是我们对于这个数值存在于我们计算出的这个范围的可信程度。
(1)举例来讲,有95%的把握,真正的数值在我们所计算的范围里。在这里,95%是置信水平,而计算出的范围,就是置信区间。
(2)如果置信度为95%, 则抽取100个样本来估计总体的均值,由100个样本所构造的100个区间中,约有95个区间包含总体均值。
6、 扑克牌54张,平均分成2份,求这2份都有2张A的概率
【参考答案】
这个问题可以通过计算概率来解决:
有2张A的概率可以通过组合来计算,即从4张A中选取2张A的组合数除以从54张牌中选取2张的组合数:P(2张A) = C(4, 2) / C(54, 2) 其中,C(n, m)表示从n个元素中选取m个元素的组合数。
我们需要将剩下的52张牌平均分成2份,每份26张。其中,有2张A的概率可以表示为:P(2张A) = P(1份有2张A,另1份没有A) + P(1份没有A,另1份有2张A) 假设第一份有2张A,第二份没有A,那么从剩下的50张牌中选出24张牌来组成第一份,剩下的26张牌自然组成第二份。这种情况的概率为:P(1份有2张A,另1份没有A) = C(4, 2) * C(50, 24) / C(54, 26)
(3)同样的道理,当第一份没有A,第二份有2张A时,这种情况的概率也是:P(1份没有A,另1份有2张A) = C(4, 0) * C(50, 26) / C(54, 26)
(4)最后,将两种情况的概率相加即可得到答案:P(两份都有2张A) = P(1份有2张A,另1份没有A) + P(1份没有A,另1份有2张A)代入计算,即可得到最终的概率。
7、做过AB test吗,谈谈原理?
【参考答案】
ABtest的本质其实是两个总体的假设检验问题。这个测试很多教育机构作业帮、学而思等经常用,用来测试哪些课程组合比较受欢迎等。当我们现在有两种方案,方案A和方案B,我们想要知道哪种方案更好,那我们就要做ABtest,也就是要做假设检验。
✅假设检验的步骤如下:
(1) 根据检验目的,构造原假设和备择假设
(2) 构造检验统计量
(3)给出显著性水平,根据样本数据,计算检验统计量的值.
(4)得出检验的结果,拒绝原假设还是没有充分的理由拒绝原假设
✅AB test具体场景问题:
AB test效果不显著,你该怎么判断这个实验的收益?
AB test中实验组核心指标明显优于对照组,那么这个优化就一定能够上线嘛?
AB test时效果显著,但是全量上线时,效果平平,问题在哪里?
AB test效果不显著时,那么是否可以判断这个实验失败了,没有意义?
一般的AB test场景问题都可以从以下几个理由中得到解释:辛普森悖论、新奇效应、以偏盖全、以全盖偏、正交互斥实验。
8、APP激活量的来源渠道很多,怎样对来源渠道变化大的进行预警?
【参考答案】
(1)如果渠道使用时间较长,认为渠道的app激活量满足一个分布,比较可能是正态分布。求平均值和标准差,对 于今日数值与均值差大于3/2/1个标准差的渠道进行预警。
(2)对于短期的新渠道,直接与均值进行对比。
9、用户刚进来APP的时候会选择属性,怎样在保证有完整用户信息的同时让用户流失减少?
【参考答案】
可以采用技术接受模型(TAM)来分析,影响用户接受选择属性这件事的主要因素有:
(1)感知的有用性(perceived usefulness),反映一个人认为使用一个具体的系统对他工作业绩提高的程度; 感知有用性:文案告知用户选择属性能给用户带来的好处
(2)感知的易用性(perceived ease of use),反映一个人认为容易使用一个具体的系统的程度。
感知易用性: a. 关联用户第三方账号 (如微博),可以冷启动阶段匹配用户更有可能选择的属性,推荐用户选择。b. 交互性做好。
(3)使用者态度:用户对填写信息的态度 a. 这里需要允许用户跳过,后续再提醒用户填写 b. 告知用户填写的信息会受到很好的保护
(4)行为意图:用户使用APP的目的性,难以控制
(5)外部变量:如操作时间、操作环境等,这里难以控制
10、卖玉米如何提高收益?价格提高多少才能获取最大收益?
【参考答案】
根据公式收益 = 单价*销售量,那么我们的策略是提高单位溢价或者提高销量。
(1) 提高单位溢价的方法:
品牌打造获得长期溢价,但缺陷是需要大量前期营销投入;
加工商品占据价值链更多环节,如熟玉米、玉米汁、玉米蛋白粉;
(2)重定位商品,如礼品化等;
价格歧视,根据价格敏感度对不同用户采用不同定价。
销售量=流量x转化率,上述提高单位溢价的方法可能对流量产生影响,也可能对转化率产生影响。
收益 = 单价x流量x转化率,短期内能规模化采用的应该是进行价格歧视,如不同时间、不同商圈的玉米价格不同,采取高定价,然后对价格敏感的用户提供优惠券等。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06