
大数据时代下,数据使用与隐私保护的博弈
3月5日《南方都市报》的一则报道引起了关注《我们仔细看了50家APP和网站的隐私协议,发现你同意了很多可怕的条款……》。这些可怕的条款包括,没有隐私保护、把个人的健康数据给一款阅读软件、把个人的信息分享给第三方网站和网站认为必要即可公开个人的私密信息等。这些信息不仅包括非个人信息,也包括个人信息,如个人的住址、职业以及敏感的健康信息等。
信息时代,网络服务商提供的软件(APP)和网站,所收集的无数信息成就了海量的大数据,商家和科技公司在通过大数据服务于每个人的同时,既可赚取大量的利润,同时也必然涉及另一个问题,有意和无意泄露个人隐私。如何在大数据时代保护个人隐私,在中国显得特别严重和紧迫。
主要表现为,商家以隐瞒和挟持的手段迫使用户放弃隐私保护。即便一些商家推出表面的隐私协议,要求用户签字,也表现为霸王条款。用户同意才能使用其软件,不同意就不能使用,而且只要使用了网站的任一服务,就表示使用者同意商家的隐私权政策。但这个政策只是商家个人的定义。
在信息时代,一方面,每个人的信息汇聚为大数据时当然不仅是为商家带来财富,也为公共利益,如攻克疾病、研发药物和反恐防恐提供了方便。根据Wikibon的报告,美国大数据产业的市场规模在2017年将达到500亿美元,这其中就包括医药公司利用基因检测软件分享个人数据,并以此为基础研发药物和新产品获取的利润。在中国,每年利用大数据获得的利益也早就超过100亿元人民币。正在召开的“两会”上,百度董事长兼首席执行官李彦宏的第一个提案就是“利用人工智能和大数据技术,帮助解决走失儿童问题”,这也是利用大数据推进和支持公益活动的具体体现。
即便大数据能解决人们生活和发展中的许多问题,而且也将是未来社会发展的一个基石和动力,但并不意味着个人隐私不需要保护。恰恰相反,大数据时代更需要保护个人隐私,才能让信息时代的技术最大化地有利于每个个体,也体现社会的公平和公正。
不过,在中国,保护个人隐私的第一个难题是,如何定义个人隐私,以及如何保护大数据涉及的隐私。中国的法律当然提及了公民个人隐私,并提出,“公民的个人数据不得非法搜集、传输、处理和利用”。但是, 中国的《民法通则》并未将隐私权作为一项独立人格权利加以保护,在隐私权方面,中国的现行立法并不清晰和明确。正因为如此,众多的网络服务商才可以在其软件和网络服务中强行以商家的规则来搜集并使用公民的隐私信息。
对此,应当根据中国的具体情况和参照发达国家对大数据时代提出的公民隐私权的解释,进行立法,以兼顾大数据的合理使用和个人隐私的保护,至少在二者之间寻求一种平衡。
美国对隐私权的规定大致有:公民个人享有秘密或者寻求隐匿的权利,同时保护公民个体的隐私权从住宅扩大到所有私人谈话与通讯过程;公民个人有匿名表达权,特别在政治意见领域;禁止某些运用公民私人信息的消极结果,如防止基因检测信息泄漏而遭到歧视;在私人信息脱离本人排他所有权之后,控制他人接触这些信息;个人有做出私人决定而不受政府干涉的权利,主要包括个人的健康、生育和性生活领域。
美国保护个人隐私既有传统,又看重现实的信息技术发展现状。1974年美国通过了《隐私法案》,2012年2月奥巴马政府又宣布推动《消费者隐私权利法案》,2015年3月美国白宫公布了《2015年消费者隐私权法案》草案。此外,针对上述公民隐私权利的内容也有许多具体的法律,如2008年出台的《基因信息非歧视法案》。
具体到个人隐私权利保护草案,也是一种妥协的结果。一方面,草案关注保护个人隐私,另一方面,又给予商家很多利用个人信息或大数据的权利。例如,草案的一个基本规定是,数据持有商必须要在透明度报告中提供更多关于其用户数据收集的信息;同时,个人访问商家储存的个人数据拥有更多的权利。但另一方面,草案也规定,商家可自行制定隐私政策。而且,如果消费者的要求被商家裁定为无理取闹的行为,商家可以选择无视这些要求。
对此草案,美国最大的信息技术公司微软表态称,微软支持《2015年消费者隐私权法案》,但并不意味着它完全认同法案里的每一项条款。微软首席隐私官布兰登•林奇(Brendon Lynch)认为,对于草案有些人反对,有些人赞同,但不管怎样这都是好消息,因为人们开始为之对话了。
从发达国家的情况看,大数据时代的信息利用和个人隐私保护一直存在博弈,中国现在的情况还达不到这一步,只是处于商家和权力机构强势获取个人信息并加以利用的阶段,公民隐私权的承认和保护还处于空白期,这种不平衡的状况也必将造成广泛的社会负面影响。对此,除了公众要将诉求通过两会代表传达到立法机构外,还需要政府的干预,才能形成大数据的合理应用与个人隐私有效保护的双赢结局。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09