京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS因子分析变量数据还需要标准化处理吗
SPSS因子分析变量数据还需要标准化处理吗? SPSS答疑群的读者最近提出这样一个问题。
我的第一反应是挤出三个字来回答:不需要!
我猜测提问的人听到这三个字,心里会“咯噔”一下,哦,原来不需要标准化。可是过不了多久又开始怀疑,这么多变量,单位不同,量纲不同,为什么不标准化呢?
要回答这个问题,可能需要引用很多本教程,而问题可能恰恰就起源于这些教程和课本。很多初学者发现,不同的书的因子分析内容对这个问题要么避而不谈,要么观点截而不同。
说到这里,我也开始没有底气回答这个问题了。
首先我想说,在学习SPSS统计分析时,你有任何的疑问都应该被提出来,而不是藏着掖着,为什么呢?SPSS终究是工具,过度依赖工具将使我们丧失思考,最终导致统计方法滥用,多提问,有助于你站在统计思维上运用SPSS工具,选择最恰当的方法比完全依赖工具更重要!
我相信一点,能出版教程的作者,在内容撰写时,每一个、每一行文字都是深思熟虑过的,我们读书的时候持疑问态度是可以的,但最后要形成自己的判断,这个最重要。
关于这个问题,我的理解如下:
一、SPSS默认选项 的理由
SPSS执行因子分析过程时,在【分析】选项参数中,模型选定【相关性矩阵】,以分析变量的相关矩阵作为提取公因子的依据,为什么不是默认选定【协方差矩阵】?SPSS背后的专家团队充分考虑到用户的体验,从第一步选入原始变量,到默认选定【相关性矩阵】,不同层级的用户,尤其是初学者,使用默认步骤和选项得到的结果,比随意选择和设定参数得到的结果更可靠些。
既然如此,我们为什么不接受开发团队的善意呢?
二、因子分析输出结果的理由
SPSS因子分析默认流程得到输出的结果之一,因子得分是标准化的,可以理解为在默认选择使用【相关性矩阵】来研究公因子的过程中,SPSS对变量自动进行了数据标准化处理。
三、因子分析原理的理由
因子分析最大的适用基础是什么?是相关,它是建立在相关性基础上的多元分析方法。使用【相关矩阵】或【协方差矩阵】在建模时具体运算不同,用SPSS做因子分析建模时,一般认为,如果使用【协方差矩阵】需要考虑对变量进行适当的标准化处理,使用SPSS默认的【相关性矩阵】不需要标准化处理,软件会自动考虑处理。
☞ 必须说明,以上三项理由,都是基于SPSS软件因子分析建模,单独讲因子分析模型或其他软件时,请慎重参考。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27