京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS因子分析变量数据还需要标准化处理吗
SPSS因子分析变量数据还需要标准化处理吗? SPSS答疑群的读者最近提出这样一个问题。
我的第一反应是挤出三个字来回答:不需要!
我猜测提问的人听到这三个字,心里会“咯噔”一下,哦,原来不需要标准化。可是过不了多久又开始怀疑,这么多变量,单位不同,量纲不同,为什么不标准化呢?
要回答这个问题,可能需要引用很多本教程,而问题可能恰恰就起源于这些教程和课本。很多初学者发现,不同的书的因子分析内容对这个问题要么避而不谈,要么观点截而不同。
说到这里,我也开始没有底气回答这个问题了。
首先我想说,在学习SPSS统计分析时,你有任何的疑问都应该被提出来,而不是藏着掖着,为什么呢?SPSS终究是工具,过度依赖工具将使我们丧失思考,最终导致统计方法滥用,多提问,有助于你站在统计思维上运用SPSS工具,选择最恰当的方法比完全依赖工具更重要!
我相信一点,能出版教程的作者,在内容撰写时,每一个、每一行文字都是深思熟虑过的,我们读书的时候持疑问态度是可以的,但最后要形成自己的判断,这个最重要。
关于这个问题,我的理解如下:
一、SPSS默认选项 的理由
SPSS执行因子分析过程时,在【分析】选项参数中,模型选定【相关性矩阵】,以分析变量的相关矩阵作为提取公因子的依据,为什么不是默认选定【协方差矩阵】?SPSS背后的专家团队充分考虑到用户的体验,从第一步选入原始变量,到默认选定【相关性矩阵】,不同层级的用户,尤其是初学者,使用默认步骤和选项得到的结果,比随意选择和设定参数得到的结果更可靠些。
既然如此,我们为什么不接受开发团队的善意呢?
二、因子分析输出结果的理由
SPSS因子分析默认流程得到输出的结果之一,因子得分是标准化的,可以理解为在默认选择使用【相关性矩阵】来研究公因子的过程中,SPSS对变量自动进行了数据标准化处理。
三、因子分析原理的理由
因子分析最大的适用基础是什么?是相关,它是建立在相关性基础上的多元分析方法。使用【相关矩阵】或【协方差矩阵】在建模时具体运算不同,用SPSS做因子分析建模时,一般认为,如果使用【协方差矩阵】需要考虑对变量进行适当的标准化处理,使用SPSS默认的【相关性矩阵】不需要标准化处理,软件会自动考虑处理。
☞ 必须说明,以上三项理由,都是基于SPSS软件因子分析建模,单独讲因子分析模型或其他软件时,请慎重参考。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12