京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何用SPSS做联合分析
如果产品的描述是由几个属性特征决定的,比如说mp3的音质、外形、容量、价格等等,商家为了确定哪个属性对消费者的影响最大,以及预测什么样的属性组合最受消费者的欢迎,选择的办法应该就是联合分析了。事实上从抽样调查的角度来看,高质量和低价格的组合是消费者的最爱,但是这对商家而言,这没有任何意义。
在SPSS中分成三个阶段,转载一个例子,帮助自己学习。
(1)ORTHOPLAN(正交设计),属性特征的所有组合产品是非常多的,所以应该通过正交设计进行筛选。以下是使用SPSS进行正交设计的程序及得出的一个正交设计方案:
*正交设计.
ORTHOPLAN
/FACTORS=price '价格'( 1 '1000元' 2 '1500元' 3 '2000元') capacity '容量' ( 1 '64M' 2 '128M' 3 '256M') tonality '音质' ( 1 '差' 2 '一般' 3 '好') fashion '外形' ( 1 '守旧' 2 '一般' 3 '时尚')
/OUTFILE='D:tempmp3plan.sav'.
以上程序在SPSS中也可通过窗口实现,执行该SPSS程序,
data->orthogonal design->generate
得出正交设计的结果,如下表:
MP3产品 价格 容量 音质 外形
A 2000 128M 好 守旧
B 2000 256M 差 一般
C 1500 64M 好 一般
D 1500 256M 一般 守旧
E 1500 128M 差 时尚
F 1000 256M 好 时尚
G 1000 64M 差 守旧
H 2000 64M 一般 时尚
I 1000 128M 一般 一般
(2)PLANCARD(生成模拟产品的卡片)
对于上面正交设计产生的9个种模拟产品,被调查者需要对每一个模拟产品的偏好进行评价,在实际调查过程中是将每个模拟产品的属性特征打印在一张卡片上,使用SPSS 语句可以一次性生成所有模拟产品的卡片,提高了制作卡片的效率。下面是生成模拟产品卡片的SPSS程序。
*生成模拟产品的卡片.
GET FILE='D:tempmp3plan.sav'.
PLANCARDS
/FACTOR=price capacity tonality fashion
/FORMAT card
/PAGINATE
/OUTFILE='d:tempcards.txt'.
执行上述程序输出所有模拟产品的卡片,
design->disdata->orthogonal play
以下只例出模拟产品ABCD的卡片输出结果
模拟产品A 模拟产品B 模拟产品C 模拟产品D
价格 2000元
容量 128M
音质 好
外形 守旧 价格 2000元
容量 256M
音质 差
外形 一般 价格 1500元
容量 64M
音质 好
外形 一般 价格 1500元
容量 256M
音质 一般
外形 守旧
在调查问卷中可设置相关的问题进行数据收集,下面是一个问题的例子。
〖出示模拟产品A的卡片〗请问您有多大可能会购买具有以下产品特征的MP3?(请以1-9为评分标准:"一定会"9分; "一定不会"1分) 【单选】
一定不会 一定会
购买可能性 1 2 3 4 5 6 7 8 9
假定通过调查得到某个消费者对9种模拟产品的评价,数据如下:
模拟产品的编号 A B C D E F G H I
购买的可能性 5 1 3 4 3 9 1 4 8
(3)CONJOINT
CONJOINT阶段只能自己编程序实现,似乎没有菜单操作可用。
conjoint plan=设计数据文件名[即(1)步产生的]。
/data=结果数据文件名[即(2)步产生,排序后得到的]。
/属性变量测试方式=相应变量列表
/subject=个体ID号
/factors=需要分析的属性变量列表
/print=需要输出的结果列表
/utility=存储数据文件名
/plot=需要绘制的图
采用SPSS中的Conjoint过程进行分析,其分析程序如下:
*输入收集的数据.
DATA LIST FREE / ID score1 to score9.
BEGIN DATA
1 5 1 3 4 3 9 1 4 8
END DATA.
SAVE OUTFILE='d:tempmp3data.sav'.
*进行结合分析.
CONJOINT
PLAN='d:tempmp3plan.sav'
/DATA='d:tempmp3data.sav'
/FACTORS=price capacity tonality fashion
/SUBJECT=id
/SCORE=score1 to score9
/PLOT=all
/UTIL='d:tempmp3result.sav'.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31