
3种SPSS综合评价方法对比,帮你理解主成分分析
评价一个主体的指标越多,我们就多一个角度去考察它,但是指标多了之后也会有另外一个麻烦,就是如何综合使用它们来评价主体呢?
排名是生活中常见的事情,但一般情况下我们只知道最终的排名结果和排名参考指标,具体的排名算法我们并不清楚,今天我们将通过SPSS软件对排名问题进行研究,以探讨其潜在的逻辑!
首先导入我们得到的源数据,数据中包含排名、高校名称以及6个供参考的指标数值。有一点我们可以确定,那就是这个最终排名一定是从6个指标中得出的,那具体的算法是什么呢,我们将慢慢探讨。
方法一:简单加法排名
加法排名的特点是取长补短,和我们高考一样,我们高考的最终排名,就是通过加法排名算法得出的,此算法的基本特点就是取长补短,不同指标的数值是等价的。根据加法算法的思想,我们将6个指标的数值进行相加,生成新的总值,并对总值做降序排名,得到如下结果:
我们惊讶地发现,通过加法排名得到的最终结果和实际结果一模一样!
方法二:个案排秩加法排名
除了将各个指标的得分相加排名外,我们还可以对各个指标分别排名,然后将各个指标的排名相加,得到个案排秩相加排名。
打开“转换”—“个案排秩”,将我们要进行排名的六个指标选进“变量”中,然后设置最大值为1,点击确定,就可以得到六个新生成的变量,这六个新变量就是六个指标的排名,将其排名相加得最终排名,如下:
我们发现,个案排秩加法得到的结果和实际结果基本一致,除了18、42和119等异常值外,其余的排名符合实际排名,这说明个案排秩也非常接近实际排名。
方法三:主成份分析排名
但我们并不局限于这两种加法排名——简单加法排名和个案排秩加法排名。我们还想进一步探究排名背后的元素,即我们想做这样一个猜想:有不能把这六个排名指标给压缩成较少数的指标,并通过这几个指标来窥测排名的背后逻辑。
我们通过主成份分析,来分析这六个指标由哪几个主成份构成。
“分析”—“降维”—“因子分析”,将我们需要的六个变量拖拽到“变量”框中,然后其它保持默认【保持默认即不旋转,是主成份分析;如果进行旋转,则为因子分析】,点击确定,得到如下图:
1、下图表示了主成份对原来六个指标的抽取情况。Initial(初始值)都是1.000,Extraction(抽取)表示着抽取的百分比,我们发现主成份对六个指标的抽取情况比较不错,基本都在0.9以上。
2、第二步,我们看抽取出来的主成份解释(Explained)了原来六个指标的百分之多少。我们发现,两个主成份,即代表了总体的0.94,因此我们最终得到两个主成份。
3、那么,这两个主成份是哪两个因素呢。下图为我们展示了主成份矩阵(Component Matrix)。我们发现Component1基本上包含了前五个指标;Component2包含了第六个指标。我们给这两个主成份命名为:自然科学和社会科学。
通过之前的设置,我们能够得到两个主成份的得分,即不同学校在不同主成份(即在自然科学和社会科学)上的得分,如下:
我们发现,排名越高的学校,其两个主成份的得分都比较靠前。但由于目测水平有限,我们实在看不出有什么更深入的东西。因为我们做一个散点图,来查看不同学校在两个维度(社会科学和自然科学)上的分布情况。
“图形”—“图形构建程序”。在图表类型中,我们不用“简单散点图”,而是选择“分组散点图”。将左侧的可选变量中的两个主成份得分变量拖进画布中,使之充当X轴和Y轴。此外,我们还想把不同学校的名称加进去,以充当标签。
在“组/点ID”中,将设置Id标签前的复选框勾选上,不选择分组变量。然后把“高校”这一变量拖到画面的标签中,点击确定。
点击确定,我们得到如下的一张图。横轴代表的是“社会科学维度”,纵轴代表的是“自然科学维度”。我们发现不同的高校分布在不同的区域上,但具体的分布情况是怎样的呢,我们加入C轴垂直线和Y轴垂线。
添加两条垂直线后,我们发现清华大学在“自然科学维度”上一骑绝尘,其次是浙江大学,北京大学和南京 大学;而在“社会科学维度”上,中国人民大学排名第一。这样,我们就通过分组散点图的形式,更深入地了解了此次排名背后的逻辑!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24