京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS详细操作:单因素方差分析
一、问题与数据
为调查A、B、C三种治疗措施对患者谷丙转氨酶(ALT)的影响,某科室将45名患者随机分为三组,每组15人,分别采取A、B、C三种治疗措施。治疗后ALT水平(U/L)如下。试问应用三种治疗措施后,患者的ALT水平是否有差异?
表1. 三组患者治疗后的ALT水平(U/L)
二、对数据结构的分析
整个数据资料涉及3组患者,每组15人,测量指标为血常规报告的ALT水平,因此属于多组设计的定量资料。
要想知道不同治疗措施对ALT水平的影响是否相同,则要比较3组的总体均数之间的差异是否具有统计学意义。若各组观察值满足独立性,服从正态分布或近似正态分布,并且各组之间的方差齐,可选用单因素方差分析。
三、SPSS分析方法
1. 数据录入SPSS(1=A组,2=B组,3=C组)
2. 选择Analyze→General Linear Model→Univariate (假设三组数据服从正态分布)
3. 选项设置
1)主对话框设置:将分析变量(ALT)送入Dependent Variable 框中→将分组变量(Group)送入Fixed Factor(s) 框中。
2) Options设置:点击Options按钮,勾选Descriptive statistics(显示统计描述)和Homogeneity tests(方差齐性检验)→Continue→OK。
四、结果解读
Descriptive Statistics表格给出了三组和总体ALT水平的部分统计信息,包括组别(Group)、均数(Mean)、标准差(Std. Deviation)和例数(N)。
Levene’s Test of Equality of Error Variances表格给出了方差齐性检验的结果。F值=0.791,P(Sig.)=0.460,说明三组数据方差齐,满足方差分析的适用条件。
Tests of Between-Subjects Effects表格给出了方差分析的结果。其中,Corrected Total一行表示总变异,Group一行表示组间变异,Error一行表示组内变异,Type Ⅲ Sum of Squares表示离均差平方和,Mean Square表示均方。方差分析的结果主要看Group一行,F值=68.810,P(Sig.)<0.001。
五、撰写结论
A组患者ALT水平为(13.28 ± 4.39)U/L,B组患者ALT水平为(28.44 ± 3.65)U/L,C组患者ALT水平为(12.15 ± 4.64)U/L。A、B、C三种治疗措施对患者ALT水平的影响差异具有统计学意义(F=68.810,P<0.001)。
六、延伸阅读
1. 单因素方差分析也可以通过Analyze→Compare Means→One-Way ANOVA进行,将ALT送入Dependent List框中,将Group送入Factor框中,其结果与本例的操作是一样的,感兴趣的亲可以自己动手试一下!
2. 单因素方差分析适用于只有一个处理因素的完全随机设计,处理因素可以有2个及以上的处理水平,观察指标为连续变量。适用条件包括:
1)观测指标满足独立性;
2)各组观测指标均来自正态分布总体;
3)各组观测指标方差相等。
在实际中由于方差分析具有稳健性,因此对正态性的条件要求不是很严格,但是对方差齐的要求比较严格。
3. 本例只是得出了3组总体均数之间差异具有统计学意义,并不意味着任意2组之间的均数差异都具有统计学意义。要想进一步了解哪两个组间的ALT水平存在差异,还需要进一步做样本均数之间的多重比较。SPSS统计软件提供了很多种用于两两比较的方法,包括Bonferroni法、S-N-K法、Tukey法等。之所以有这么多种方法,是因为目前还没有一种在任何条件下都适用、而且效果好的方法,这些方法都是从不同角度上控制多重比较时I型错误的发生概率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01