京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在当今的数据驱动时代,能够高效地处理和分析数据变得极为重要。Pandas,作为一个开源的Python数据分析库,因其强大的数据处理能力而受到数据分析师和科学家的广泛欢迎。它提供了灵活高效的数据结构,如DataFrame和Series,使得数据清洗、分析和可视化变得更加直接和便捷。
本文旨在通过一个实际的案例——从电商平台的店铺数据中提取出每个品类中成本价最低的网店名称,来展示如何利用Pandas的高级功能进行数据处理和分析。我们将一步步探讨数据的读取、预处理、分组、转换、过滤及聚合等关键步骤,以及如何通过这些步骤解决实际问题。
数据分析的第一步通常是数据的准备和预处理,这包括数据的导入、清洗和格式化。使用Pandas,我们可以轻松地完成这些任务。
Pandas提供了pd.read_csv函数,使得读取CSV文件变得异常简单。通过指定index_col参数,我们可以将数据文件中的某一列作为DataFrame的索引,这在处理时间序列数据或需要根据某个特定标识符快速访问行数据时特别有用。
import pandas as pd
df = pd.read_csv("data/店铺数据_低价店铺.csv", index_col=0)
这段代码读取了一个名为店铺数据_低价店铺.csv的文件,并将第一列设置为DataFrame的索引列。这是一个常见的操作,可以让后续的数据处理更加方便。
数据清洗是数据分析中的一个重要步骤,它包括但不限于识别并处理缺失值、异常值和重复数据。Pandas提供了多种方法来检查和清洗数据集,如isnull(), dropna(), fillna(), 和 drop_duplicates()等。
例如,如果我们想要删除含有缺失值的行,可以使用:
df.dropna(inplace=True)
这将从df中删除任何含有缺失值的行,inplace=True参数意味着在原地修改原始DataFrame,而不是创建一个新的。
在处理大型数据集时,经常需要根据某一列或多列的值将数据分组,以便对每个分组执行某些操作。Pandas的groupby方法使得这种类型的数据操作变得简单高效。
groupby方法允许我们按照某一列的值将数据分为不同的组,并对每个组应用聚合函数、转换函数或过滤操作。在我们的案例中,我们需要按照“品类”列的值对数据进行分组:
品类 = df.groupby("品类")
通过这种方式,我们创建了一个按品类分组的对象,接下来可以对这些分组执行各种操作。
使用分组对象,我们可以对每个组内的数据应用自定义的转换函数。在本案例中,我们的目标是计算每个品类的最低成本价。这可以通过定义一个转换函数并使用apply方法来实现:
def tr(x):
x["最低成本价"] = x["成本价"].min()
return x
df2 = 品类.apply(tr)
这里,tr函数对每个分组计算了最低成本价,并将其作为一个新列添加到了分组DataFrame中。apply方法非常强大,它允许我们对分组数据应用几乎任意复杂的函数。
在对数据集进行分组和转换之后,经常需要根据某些条件过滤数据。在我们的例子中,我们需要找到每个品类中成本价等于最低成本价的记录。这可以通过布尔索引实现,它是Pandas中一种非常强大的数据过滤技术。
布尔索引允许我们使用一个布尔表达式来选择DataFrame的行。在本案例中,我们将使用这种技术来筛选出那些其成本价等于最低成本价的行:
df4 = df3[df3["成本价"] == df3["最低成本价"]]
这行代码创建了一个新的DataFrame df4,其中只包含那些成本价等于该品类最低成本价的记录。这是通过比较df3中的“成本价”列和“最低成本价”列,然后选择两者相等的行来实现的。
在处理分类数据时,经常需要将同一类中的多个记录聚合成单个记录。Pandas提供了多种方法来实现这一点,包括但不限于sum、mean、min、max等聚合函数。在我们的案例中,我们将使用apply方法配合字符串连接操作str.cat,来聚合每个品类中成本价最低的网店名称。
我们的目标是为每个品类生成一个包含所有最低成本价网店名称的字符串。这可以通过对df4进行分组,并使用apply方法来实现:
df5 = df4.groupby("品类").apply(lambda x: x["网店名称"].str.cat(sep=",")).reset_index().rename(columns={0: "网店名称"})
这段代码首先对df4按“品类”进行分组,然后对每个分组应用一个匿名函数,该函数使用str.cat方法将同一品类中所有网店名称连接成一个字符串,各个名称之间用逗号分隔。最后,我们使用reset_index和rename方法来调整结果DataFrame的格式,使其包含两列:“品类”和“网店名称”。
通过本文的案例,我们详细探讨了Pandas在数据处理和分析中的一些高级技巧,包括数据读取、预处理、分组、过滤和聚合等。这些技巧在处理实际数据分析项目时非常有用,能够帮助我们高效地解决各种数据处理问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12