
如何写版本的数据分析报告
做数据分析的目的是什么
通过分析数据来验证我们的功能是否有效,我们的猜想是否正确,以便对之后的版本进行相应的调整。
做成报告形式的目的是什么
1. 归档存根,是一个特定时期内特定功能的数据分析,方便后来者查阅对比分析。
2. 阶段成果的展示,不管这个成果是好是坏,都需要进行总结。
3. 报告会让你清晰条理的关注到底哪些是最值得分析深究的数据。
怎样做数据分析报告
我在写数据报告的时候一般喜欢按照这样的格式:
基于什么样的背景
为了达成怎样的目的
做了怎样的功能
监控了哪些指标项
各指标分结论
总结
报告的格式仅供参考,只要能把事情说清楚,能梳理清楚自己的逻辑就好。
数据分析要注意什么
1. 数据只是量化事物的手段,它代表了一个客观情况,没有好与坏,对与错,无感情色彩
数据具有天然的客观性,无论我们是否触碰它,它已经发生并且不会改变,所以当我们面对海量的数据时,更像一个“求知者”,我们要做的是去读取它,分析它,解读它。
2.根据业务与对产品功能的认知了解,定义核心分析指标
提出数据需求的过程往往是一个数据分析报告的源头,你所有的分析都来自你最初定义下的指标。而提出数据需求是一个“界定产品目标,根据目标提出假设,预判产品效果”的过程,要求对这些过程有着清晰的预判与掌握。
3. 分析数据要胆大心细
我们要对数据足够敏感,能够敏锐的发现数据中的隐含信息,并通过逻辑去推理,进一步提出大胆的假设与追问,最后通过进一步的跟踪和其他手段去验证。
4. 分析的结论一定要严谨,切忌主观性
猜测性的结论只能叫做猜想,一定要经过横向对比,纵向对比后才能写成最后的结论。
5. 建立相关指标
一个功能的核心指标是大方向,但还需要核心指标下的细分相关指标,这些相关指标是能够影响核心指标变动的,他们之间必须有着强逻辑关系并且建立的这些相关指标我们要清楚的知道他们是如何影响核心指标的。
6. 数据分析要控制好变量,多做同比
新版本的功能数据要多与老版本的同期比较,如上线后第一周的数据同比老版本上线后第一周的数据,一般新升级的用户往往更活跃,同比能尽量控制用户群体的一致性。
7. 数据分析报告尽量图表化
人类也是是视觉动物,图形化的界面总是会更加直观形象的传递你的信息。作为一枚产品汪,你的产出物也是你的产品,可以照顾一下读者的用户体验。当然,图表也不要太多,过多的图表一样会让人无所适从。
8. 好的分析报告一定要有解决方案和建议方案
做报告的很大目的是为了总结并指导接下来的工作,你既然很努力地去了解产品并进行了深入的分析,那么这个过程就决定了你可能比别人更清楚的发现了问题及产生的原因,那么你做出的建议和结论想必也会更有意义。
9. 不要害怕或回避“不良结论”
分析就是为了发现问题,并为解决问题提供决策依据的,在产品缺陷和问题造成重大失误前意识到并解决它就是你的分析的价值所在了。
10. 行文切记通俗易懂
这一点是属于看似最不重要也最容易被忽视的一点,你的读书往往都是不像你这么了解这块功能,业务及背景的,如果你的报告行文不够通俗易懂,还有一大堆专业难懂的词汇的话,你的读者往往会半途而废。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 本课程 ...
2025-07-28CDA 数据分析师必备技能全解析 在数据驱动决策的时代,CDA 数据分析师作为连接数据与业务价值的桥梁,需要具备多元化的技能体系 ...
2025-07-28PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-28t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-28PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21