京公网安备 11010802034615号
经营许可证编号:京B2-20210330
很多考了CDA数据分析一级的伙伴经常问的就是:如何来找一些数据分析的项目来做,练习所学习的数据分析技能,并能写出一份数据分析报告呢?想转数据运营,如果没有项目经验很难找到一份相关工作。从哪里可以学习如何做数据分析项目?如何找到项目做?如何出报告?
一、Kaggle
Kaggle发布了大量的数据分析、挖掘、机器学习预测项目,没有实习和项目经历的小伙伴可以在Kaggle上找到项目练手。
Kaggle上的项目有不同的项目分类,包括探索性分析,数据可视化,趋势预测,分类等多种类型,可以根据自己的需要选择不同过类型的项目练手。
二、阿里天池
网址:https://tianchi.aliyun.com/
Kaggle的项目都是英文的,有的小伙伴可能觉得英文看起来太费劲,阿里天池的项目全是中文的,阅读无障碍。
这里给大家整理了10个适合新人的项目:
1、Hotelbookingdemand酒店预订需求
https://www.kaggle.com/jessemostipak/hotel-booking-demand
该数据集包含城市酒店和度假酒店的预订信息,包括预订时间、停留时间,成人/儿童/婴儿人数以及可用停车位数量等信息。
适用场景:社会科学、旅行、酒店、用户行为,不具有明显的行业标识,可进行常规用户行为分析。
数据量:32列共12W数据量。
可以定义的问题:
1)基本情况:城市酒店和假日酒店预订需求和入住率比较;
2)用户行为:提前预订时长、入住时长、预订间隔、餐食预订情况;
3)一年中最佳预订酒店时间;
4)利用Logistic预测酒店预订。
2、VideoGameSales电子游戏销售分析
https://www.kaggle.com/gregorut/videogamesales
包含游戏名称、类型、发行时间、发布者以及在全球各地的销售额数据。适用场景:电商、游戏销售,常规销售数据。
数据量:11列共1.66W数据量。
可以定义的问题:
1)电子游戏市场分析:受欢迎的游戏、类型、发布平台、发行人等;
2)预测每年电子游戏销售额。
3)可视化应用:如何完整清晰地展示这个销售故事。
3、USAccidents美国交通事故分析(2016-2019)
https://www.kaggle.com/sobhanmoosavi/us-accidents
覆盖全美49州的全国性交通事故数据集,时间跨度:2016.02-2019.12,包括事故严重程度、事故开始和结束时间、事故地点、天气、温度、湿度等数据。适用场景:无明显行业标识,通用。
数据量:49列共300W数据量。
可以定义的问题:
1)发生事故最多的州,什么时候容易发生事故;
2)影响事故严重程度的因素;
3)预测事故发生的地点;
4)可视化应用:讲述4年间美国发生事故的总体情况
4、IBM员工离职因素分析
https://www.kaggle.com/datasets/pavansubhasht/ibm-hr-analytics-attrition-dataset
IBM员工离职原因数据及包括员工编号、年龄、受教育程度、离家距离、生活和工作的平衡、工作参与情况等信息。
可以定义的问题:
1)通过分析该数据集可以找出员工流失的因素
2)工作角色和流失率的相关性;
3)离家距离与流失率的相关性;
4)平均月收入和受教育程度对流失率的影响
5、探索影响寿命的因素
https://www.kaggle.com/datasets/kumarajarshi/life-expectancy-who
世界卫生组织(WHO)旗下的全球卫生观察站(GHO)数据存储库跟踪了所有国家的健康状况以及许多其他相关因素,该数据集包括了人口统计学变量,收入构成和死亡率等信息。
可以定义的问题:1)最初选择的各种预测因素是否会真正影响预期寿命?
2)哪些预测变量实际上会影响预期寿命?
3)预期寿命值低于(<65)的国家是否应该增加其医疗保健支出以改善其平均寿命?
4)婴儿和成人死亡率如何影响预期寿命?
5)预期寿命与饮食习惯,生活方式,运动,吸烟,饮酒等有正相关还是负相关?
6)学校教育对人类寿命有何影响?7)预期寿命与饮酒有正面还是负面的关系?
6、NewYorkCityAirbnbOpenData纽约市Airbnb订房数据
https://www.kaggle.com/dgomonov/new-york-city-airbnb-open-data
用途:房价预测和可视化展示
7、TheMoviesDataset电影数据集分析
https://www.kaggle.com/rounakbanik/the-movies-dataset
用途:多表关联、评分排序、收入分析、推荐引擎
8、TelcoCustomerChurn电信客户流失问题
https://www.kaggle.com/blastchar/telco-customer-churn
https://www.kaggle.com/wendykan/lending-club-loan-data
用途:金融小贷、逾期分析、逾期预测
10、BitcoinHistoricalData比特币数据分析
https://www.kaggle.com/mczielinski/bitcoin-historical-data
用途:时间戳、数据清洗、价格预测
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23