京公网安备 11010802034615号
经营许可证编号:京B2-20210330
很多考了CDA数据分析一级的伙伴经常问的就是:如何来找一些数据分析的项目来做,练习所学习的数据分析技能,并能写出一份数据分析报告呢?想转数据运营,如果没有项目经验很难找到一份相关工作。从哪里可以学习如何做数据分析项目?如何找到项目做?如何出报告?
一、Kaggle
Kaggle发布了大量的数据分析、挖掘、机器学习预测项目,没有实习和项目经历的小伙伴可以在Kaggle上找到项目练手。
Kaggle上的项目有不同的项目分类,包括探索性分析,数据可视化,趋势预测,分类等多种类型,可以根据自己的需要选择不同过类型的项目练手。
二、阿里天池
网址:https://tianchi.aliyun.com/
Kaggle的项目都是英文的,有的小伙伴可能觉得英文看起来太费劲,阿里天池的项目全是中文的,阅读无障碍。
这里给大家整理了10个适合新人的项目:
1、Hotelbookingdemand酒店预订需求
https://www.kaggle.com/jessemostipak/hotel-booking-demand
该数据集包含城市酒店和度假酒店的预订信息,包括预订时间、停留时间,成人/儿童/婴儿人数以及可用停车位数量等信息。
适用场景:社会科学、旅行、酒店、用户行为,不具有明显的行业标识,可进行常规用户行为分析。
数据量:32列共12W数据量。
可以定义的问题:
1)基本情况:城市酒店和假日酒店预订需求和入住率比较;
2)用户行为:提前预订时长、入住时长、预订间隔、餐食预订情况;
3)一年中最佳预订酒店时间;
4)利用Logistic预测酒店预订。
2、VideoGameSales电子游戏销售分析
https://www.kaggle.com/gregorut/videogamesales
包含游戏名称、类型、发行时间、发布者以及在全球各地的销售额数据。适用场景:电商、游戏销售,常规销售数据。
数据量:11列共1.66W数据量。
可以定义的问题:
1)电子游戏市场分析:受欢迎的游戏、类型、发布平台、发行人等;
2)预测每年电子游戏销售额。
3)可视化应用:如何完整清晰地展示这个销售故事。
3、USAccidents美国交通事故分析(2016-2019)
https://www.kaggle.com/sobhanmoosavi/us-accidents
覆盖全美49州的全国性交通事故数据集,时间跨度:2016.02-2019.12,包括事故严重程度、事故开始和结束时间、事故地点、天气、温度、湿度等数据。适用场景:无明显行业标识,通用。
数据量:49列共300W数据量。
可以定义的问题:
1)发生事故最多的州,什么时候容易发生事故;
2)影响事故严重程度的因素;
3)预测事故发生的地点;
4)可视化应用:讲述4年间美国发生事故的总体情况
4、IBM员工离职因素分析
https://www.kaggle.com/datasets/pavansubhasht/ibm-hr-analytics-attrition-dataset
IBM员工离职原因数据及包括员工编号、年龄、受教育程度、离家距离、生活和工作的平衡、工作参与情况等信息。
可以定义的问题:
1)通过分析该数据集可以找出员工流失的因素
2)工作角色和流失率的相关性;
3)离家距离与流失率的相关性;
4)平均月收入和受教育程度对流失率的影响
5、探索影响寿命的因素
https://www.kaggle.com/datasets/kumarajarshi/life-expectancy-who
世界卫生组织(WHO)旗下的全球卫生观察站(GHO)数据存储库跟踪了所有国家的健康状况以及许多其他相关因素,该数据集包括了人口统计学变量,收入构成和死亡率等信息。
可以定义的问题:1)最初选择的各种预测因素是否会真正影响预期寿命?
2)哪些预测变量实际上会影响预期寿命?
3)预期寿命值低于(<65)的国家是否应该增加其医疗保健支出以改善其平均寿命?
4)婴儿和成人死亡率如何影响预期寿命?
5)预期寿命与饮食习惯,生活方式,运动,吸烟,饮酒等有正相关还是负相关?
6)学校教育对人类寿命有何影响?7)预期寿命与饮酒有正面还是负面的关系?
6、NewYorkCityAirbnbOpenData纽约市Airbnb订房数据
https://www.kaggle.com/dgomonov/new-york-city-airbnb-open-data
用途:房价预测和可视化展示
7、TheMoviesDataset电影数据集分析
https://www.kaggle.com/rounakbanik/the-movies-dataset
用途:多表关联、评分排序、收入分析、推荐引擎
8、TelcoCustomerChurn电信客户流失问题
https://www.kaggle.com/blastchar/telco-customer-churn
https://www.kaggle.com/wendykan/lending-club-loan-data
用途:金融小贷、逾期分析、逾期预测
10、BitcoinHistoricalData比特币数据分析
https://www.kaggle.com/mczielinski/bitcoin-historical-data
用途:时间戳、数据清洗、价格预测
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09