京公网安备 11010802034615号
经营许可证编号:京B2-20210330
很多考了CDA数据分析一级的伙伴经常问的就是:如何来找一些数据分析的项目来做,练习所学习的数据分析技能,并能写出一份数据分析报告呢?想转数据运营,如果没有项目经验很难找到一份相关工作。从哪里可以学习如何做数据分析项目?如何找到项目做?如何出报告?
一、Kaggle
Kaggle发布了大量的数据分析、挖掘、机器学习预测项目,没有实习和项目经历的小伙伴可以在Kaggle上找到项目练手。
Kaggle上的项目有不同的项目分类,包括探索性分析,数据可视化,趋势预测,分类等多种类型,可以根据自己的需要选择不同过类型的项目练手。
二、阿里天池
网址:https://tianchi.aliyun.com/
Kaggle的项目都是英文的,有的小伙伴可能觉得英文看起来太费劲,阿里天池的项目全是中文的,阅读无障碍。
这里给大家整理了10个适合新人的项目:
1、Hotelbookingdemand酒店预订需求
https://www.kaggle.com/jessemostipak/hotel-booking-demand
该数据集包含城市酒店和度假酒店的预订信息,包括预订时间、停留时间,成人/儿童/婴儿人数以及可用停车位数量等信息。
适用场景:社会科学、旅行、酒店、用户行为,不具有明显的行业标识,可进行常规用户行为分析。
数据量:32列共12W数据量。
可以定义的问题:
1)基本情况:城市酒店和假日酒店预订需求和入住率比较;
2)用户行为:提前预订时长、入住时长、预订间隔、餐食预订情况;
3)一年中最佳预订酒店时间;
4)利用Logistic预测酒店预订。
2、VideoGameSales电子游戏销售分析
https://www.kaggle.com/gregorut/videogamesales
包含游戏名称、类型、发行时间、发布者以及在全球各地的销售额数据。适用场景:电商、游戏销售,常规销售数据。
数据量:11列共1.66W数据量。
可以定义的问题:
1)电子游戏市场分析:受欢迎的游戏、类型、发布平台、发行人等;
2)预测每年电子游戏销售额。
3)可视化应用:如何完整清晰地展示这个销售故事。
3、USAccidents美国交通事故分析(2016-2019)
https://www.kaggle.com/sobhanmoosavi/us-accidents
覆盖全美49州的全国性交通事故数据集,时间跨度:2016.02-2019.12,包括事故严重程度、事故开始和结束时间、事故地点、天气、温度、湿度等数据。适用场景:无明显行业标识,通用。
数据量:49列共300W数据量。
可以定义的问题:
1)发生事故最多的州,什么时候容易发生事故;
2)影响事故严重程度的因素;
3)预测事故发生的地点;
4)可视化应用:讲述4年间美国发生事故的总体情况
4、IBM员工离职因素分析
https://www.kaggle.com/datasets/pavansubhasht/ibm-hr-analytics-attrition-dataset
IBM员工离职原因数据及包括员工编号、年龄、受教育程度、离家距离、生活和工作的平衡、工作参与情况等信息。
可以定义的问题:
1)通过分析该数据集可以找出员工流失的因素
2)工作角色和流失率的相关性;
3)离家距离与流失率的相关性;
4)平均月收入和受教育程度对流失率的影响
5、探索影响寿命的因素
https://www.kaggle.com/datasets/kumarajarshi/life-expectancy-who
世界卫生组织(WHO)旗下的全球卫生观察站(GHO)数据存储库跟踪了所有国家的健康状况以及许多其他相关因素,该数据集包括了人口统计学变量,收入构成和死亡率等信息。
可以定义的问题:1)最初选择的各种预测因素是否会真正影响预期寿命?
2)哪些预测变量实际上会影响预期寿命?
3)预期寿命值低于(<65)的国家是否应该增加其医疗保健支出以改善其平均寿命?
4)婴儿和成人死亡率如何影响预期寿命?
5)预期寿命与饮食习惯,生活方式,运动,吸烟,饮酒等有正相关还是负相关?
6)学校教育对人类寿命有何影响?7)预期寿命与饮酒有正面还是负面的关系?
6、NewYorkCityAirbnbOpenData纽约市Airbnb订房数据
https://www.kaggle.com/dgomonov/new-york-city-airbnb-open-data
用途:房价预测和可视化展示
7、TheMoviesDataset电影数据集分析
https://www.kaggle.com/rounakbanik/the-movies-dataset
用途:多表关联、评分排序、收入分析、推荐引擎
8、TelcoCustomerChurn电信客户流失问题
https://www.kaggle.com/blastchar/telco-customer-churn
https://www.kaggle.com/wendykan/lending-club-loan-data
用途:金融小贷、逾期分析、逾期预测
10、BitcoinHistoricalData比特币数据分析
https://www.kaggle.com/mczielinski/bitcoin-historical-data
用途:时间戳、数据清洗、价格预测
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24