京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS与Streams的集成实现实时预测
SPSS Modeler 是一个数据挖掘工作台,提供了一个可了解数据并生成预测模型的最先进的环境。Streams 提供了一个可伸缩的高性能环境,对不断变化的数据进行实时分析,这些数据中包括传统结构的数据和半结构化到非结构化数据类型。
在实时处理需要高级分析时,使用Streams和SPSS集成,实现实时评分预测。实时应用预测分析的用例的示例包括网络安全、银行和信用卡欺诈检测、预测性维护,以及实时营销产品。
Streams + SPSS Analytics Toolkit 的特点
利用Streams实现高吞吐量、低延迟的评分
利用SPSS Modeler开发和建立评分模型
通过SPSSScoring Operator将模型部署到Streams
模型更新而无需暂停Streams
通过SPSS Collaboration and Deployment Services管理模型的生命周期
SPSS Analytics Toolkit for Streams
SPSSScoring operator
SPSSScoring operator实现在Streams应用中使用预定义的SPSS的预测模型进行评分预测,它假设预测模型已经在SPSS Moduler定义好并通过SPSS Solution Publisher导出这三个文件:
model.pim
model.par
model.xml
SPSSScoring 代码例子
stream<DataSchemaPlus> scorer = com.ibm.spss.streams.analytics::SPSSScoring(data) {parampimfile: getThisToolkitDir() +"/etc/PimParXml/model.pim"; parfile: getThisToolkitDir() +"/etc/PimParXml/model.par"; xmlfile: getThisToolkitDir() +"/etc/PimParXml/model.xml"; modelFields:"sex","income"; streamAttributes: s_sex, baseSalary+bonusSalary; output scorer: income = fromModel("income"), predLabel = fromModel("$C-beer_beans_pizza"), confidence = fromModel("$CC-beer_beans_pizza"); }
SPSSPublish operator
SPSSPublish operator 自动“发布”的一个模型文件的评分分支并总结所生成的文件,以便下游的Operator可以通过“分布”操作所创建或更新的PIM、PAR和XML文件,刷新他们的评分标准实施。通常情况下,SPSSPublish operator配合上游的DirectoryScan 或 SPSSRepository operator,及下游的SPSSScoring operator,即:
DirecoryScan/SPSSRepository -> SPSSPublish -> SPSSScoring
其中DirectoryScan 或 SPSSRepository operator检测到有新的模型文件可用,就将新模型的文件名发生个SPSSPublish operator。SPSSPublish的下游通常是SPSSSoring。当SPSSPublish获取到新模型,它就会生成SPSSSoring所需的PIM、PAR和XML文件,然后发生通知给SPSSSoring,通知也新的模型可用了。SPSSScoring收到通知后会刷新内部模型。
SPSSPublish代码例子:
stream<rstring strFilePath> strFile = DirectoryScan(){
param
directory : "/tmp";
pattern : "newmodel.str";
ignoreExistingFilesAtStartup : true;
config placement : host(P1);
}
stream<rstring fileName> notifier = com.ibm.spss.streams.analytics::SPSSPublish(strFile){
param
sourceFile: "newmodel.str";
targetPath: "/tmp";
config placement : host(P1);
}
stream<DataSchemaPlus> scorer = com.ibm.spss.streams.analytics::SPSSScoring(data;notifier) {
param
pimfile: getThisToolkitDir() +"/etc/PimParXml/model.pim";
parfile: getThisToolkitDir() +"/etc/PimParXml/model.par";
xmlfile: getThisToolkitDir() +"/etc/PimParXml/model.xml";
modelFields: "sex","income";
streamAttributes: s_sex, baseSalary+bonusSalary;
output
scorer:
income = fromModel("income"),
predLabel = fromModel("$C-beer_beans_pizza"),
confidence = fromModel("$CC-beer_beans_pizza");
config placement : host(P1);
}
SPSSRepository operator
SPSSRepository operator监视部署在SPSS Collaboration and Deployment Services库的对象的变化。当被监控的对象发生变化,相关通知则会发给所有的Listener。收到通知,SPSSRepostory会从Repostory下载该对象的新版本文件并将文件写到目标目录,这步操作成功之后,SPSSRepostory再提交描述文件已更新的事件给下游Operator。
Streams + SPSS 的参考架构
根据前面对SPSS Analytics Toolkit的功能描述,Streams + SPSS的参考架构可以由下图表示:
小结
本文通过对SPSS Analytics Toolkit和这些Toolkit与Streams集成参考架构的描述,为读者呈现了如何使用业界最好的数据挖掘工具SPSS和流数据分析平台Streams进行实时评分和预测。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31