
(以下文章来源于湘江数评,作者老杨)
数字化转型建设每个企业都在做,但最终的结果却是天壤之别,有的企业利用数字化系统提高了工作效率,降低了管理成本,而有的企业却在系统上线以后明显感觉还不如传统纸质管理模式效率高,吐槽声不绝于耳,为什么会有如此问题?老杨认为,除了老生常谈的认知问题,最重要的还是管理体系的问题,当前大部分传统企业数字化建设失败率高的几个关键环节主要体现在:
第一,实施环节:
为什么部分的传统企业数字化建设在实施阶段烂尾,其原因有如下几点:
1.前期的需求初心:
与其说是需求不如说是需要,因为当前部分企业做系统引进仅仅是因为业务部门有需要,然后就头脑发热去引进一套系统,从来不考虑部门之间的协同性问题,管理的孤岛造就了需求的孤立性、功能应的拓展性,所以信息部门需要注意的是业务部门有数字化的功能需要并不等于需求,要学会判断其必要性、可行性、价值性及可落地性,不能因业务部门的头脑发热一时冲动而感到热血澎湃,信息部门需要的是冷静的分析与判断。
2.中期的需求转化:
业务部门的需求从提出到实现最关键的一个过程就是转化,为什么数字化需求需要转化?在当前大部分的传统企业中领导及业务部门对数字化的认知是有限的,对需求的表达能力也是有限的,很多时候业务部门可能心理十分的清楚自己想要什么,但难以用语言表达出来,这就需要信息部门来引导、并根据企业当前的管理模式来修正;但问题是部分企业或者大部分的中小企业没有信息部门,就缺乏了这样一个沟通与修正的环节,直接与软件公司接洽,这个时候部分软件企业为了拿到订单,承诺任何需求均可实现,甚至还加入一些超预期的方案,美其名曰与标杆看齐,引进所谓“灯塔”企业的管理模式,其实这些需求的转化是不切实际的,自然在后期的实施中难以实现;
3.后期的需求实现:
为什么部分企业数字化建设在需求阶段就烂尾了,这个环节就体现在这个需求实现,问题主要体现在:实施能力!主要包括两个方面,第一是企业信息部门的实施管控能力,部分企业的信息部门喜欢做甩手掌柜,在实施过程中不管不问,导致实施失控;第二是软件公司的实施团队能力与经验不足,在业务部门需求不明、需求不定、或者消极配合的情况下难以做引导与修正,一般情况下是等、靠、要,缺乏实施工作的创新性与主动性,从而被业务部门牵着鼻子走,有限的实施人天被无限拉长,最后迫于成本压力主动放弃项目;所以最后软件公司不仅失去的是数字化建设成本,还失去了对数字化转型的信心。
从以上不难看出系统实施的重要性,但问题是大部分的企业缺乏的就是这种对于实施的专业管控能力,从需求收集到实现的过程转化能力,所以企业应在需求上重视、过程实现上科学管理,这是企业数字化系统落地的基础保障。
第二,应用环节:
数字化系统应用难,是当前大部分企业数字化转型建设的最大拦路虎,为什么会存在这样的问题?其中既有技术问题,也有管理上的不足,更多的是大部分传统企业没有数字化运营的意识,主要表现在如下:
1.系统上线后业务部门吐槽多:
究其原因除了前期需求的问题,也有可能与软件公司的实施质量有关,让系统的相关功能难以与业务部门的需求匹配,更多的是部分员工不愿改变固有的工作模式,难以接受新事物,也可能是数字化管理让一些灰度不在,让一些人失去了既得利益,所以在系统应用上槽点多;
2.系统上线后缺乏运营监管能力:
这是大部分传统企业普遍存在的问题,也就是说系统上线以后除了日常的后台运维动作外就没有然后了,导致系统用与不与一个样,数据的及时性、准确性难以保障,失去数字化管控的价值;
企业数字化转型建设的价值体现关键在于应用环节,所以企业不仅要在前期实施环节下足功夫,更重要的是在应用环节加大力度,这种力度包括推广的力度、监管的力度、对于数据的质量保障与应用力度。
第三,迭代环节:
做数字化烧钱是大部分传统企业领导共同的一个认知,这导致的结果就对数字化建设缺乏可持续性的投入,因为随着企业到达数字化应用的深水区,前期因缺乏规划性管理而造成苦果在此时全部呈现,比如各种系统孤岛的打通,数据的清洗与标准化建设,同时还有随着管理场景的不断变化引发的系统功能与技术迭代,以上这一切企业都必须要用大量的真金白银来买单,如果不投入,不改善,直接影响的就是应用效果,而在现实中往往是部分企业领导总是以成本来衡量系统,从而导致后续迭代乏力。
综上所述,虽然大部分企业深知数字化转型建设是系统化的工程,但在真正落地的环节却缺乏精细化的管理与管控手段,缺乏足够的保障措施,那么企业该如何做?老杨认为企业需要有如下“八个一”保障:
一个专业的组织保障;
一个明确的需求保障;
一套可落地的方案保障;
一个清晰的实现路径保障;
一个科学的专业的实施保障;
一套可执行的运营制度保障;
一个可持续的资金保障;
一套可持续迭代的技术保障;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28