
(以下文章来源于湘江数评,作者老杨)
数字化转型建设每个企业都在做,但最终的结果却是天壤之别,有的企业利用数字化系统提高了工作效率,降低了管理成本,而有的企业却在系统上线以后明显感觉还不如传统纸质管理模式效率高,吐槽声不绝于耳,为什么会有如此问题?老杨认为,除了老生常谈的认知问题,最重要的还是管理体系的问题,当前大部分传统企业数字化建设失败率高的几个关键环节主要体现在:
第一,实施环节:
为什么部分的传统企业数字化建设在实施阶段烂尾,其原因有如下几点:
1.前期的需求初心:
与其说是需求不如说是需要,因为当前部分企业做系统引进仅仅是因为业务部门有需要,然后就头脑发热去引进一套系统,从来不考虑部门之间的协同性问题,管理的孤岛造就了需求的孤立性、功能应的拓展性,所以信息部门需要注意的是业务部门有数字化的功能需要并不等于需求,要学会判断其必要性、可行性、价值性及可落地性,不能因业务部门的头脑发热一时冲动而感到热血澎湃,信息部门需要的是冷静的分析与判断。
2.中期的需求转化:
业务部门的需求从提出到实现最关键的一个过程就是转化,为什么数字化需求需要转化?在当前大部分的传统企业中领导及业务部门对数字化的认知是有限的,对需求的表达能力也是有限的,很多时候业务部门可能心理十分的清楚自己想要什么,但难以用语言表达出来,这就需要信息部门来引导、并根据企业当前的管理模式来修正;但问题是部分企业或者大部分的中小企业没有信息部门,就缺乏了这样一个沟通与修正的环节,直接与软件公司接洽,这个时候部分软件企业为了拿到订单,承诺任何需求均可实现,甚至还加入一些超预期的方案,美其名曰与标杆看齐,引进所谓“灯塔”企业的管理模式,其实这些需求的转化是不切实际的,自然在后期的实施中难以实现;
3.后期的需求实现:
为什么部分企业数字化建设在需求阶段就烂尾了,这个环节就体现在这个需求实现,问题主要体现在:实施能力!主要包括两个方面,第一是企业信息部门的实施管控能力,部分企业的信息部门喜欢做甩手掌柜,在实施过程中不管不问,导致实施失控;第二是软件公司的实施团队能力与经验不足,在业务部门需求不明、需求不定、或者消极配合的情况下难以做引导与修正,一般情况下是等、靠、要,缺乏实施工作的创新性与主动性,从而被业务部门牵着鼻子走,有限的实施人天被无限拉长,最后迫于成本压力主动放弃项目;所以最后软件公司不仅失去的是数字化建设成本,还失去了对数字化转型的信心。
从以上不难看出系统实施的重要性,但问题是大部分的企业缺乏的就是这种对于实施的专业管控能力,从需求收集到实现的过程转化能力,所以企业应在需求上重视、过程实现上科学管理,这是企业数字化系统落地的基础保障。
第二,应用环节:
数字化系统应用难,是当前大部分企业数字化转型建设的最大拦路虎,为什么会存在这样的问题?其中既有技术问题,也有管理上的不足,更多的是大部分传统企业没有数字化运营的意识,主要表现在如下:
1.系统上线后业务部门吐槽多:
究其原因除了前期需求的问题,也有可能与软件公司的实施质量有关,让系统的相关功能难以与业务部门的需求匹配,更多的是部分员工不愿改变固有的工作模式,难以接受新事物,也可能是数字化管理让一些灰度不在,让一些人失去了既得利益,所以在系统应用上槽点多;
2.系统上线后缺乏运营监管能力:
这是大部分传统企业普遍存在的问题,也就是说系统上线以后除了日常的后台运维动作外就没有然后了,导致系统用与不与一个样,数据的及时性、准确性难以保障,失去数字化管控的价值;
企业数字化转型建设的价值体现关键在于应用环节,所以企业不仅要在前期实施环节下足功夫,更重要的是在应用环节加大力度,这种力度包括推广的力度、监管的力度、对于数据的质量保障与应用力度。
第三,迭代环节:
做数字化烧钱是大部分传统企业领导共同的一个认知,这导致的结果就对数字化建设缺乏可持续性的投入,因为随着企业到达数字化应用的深水区,前期因缺乏规划性管理而造成苦果在此时全部呈现,比如各种系统孤岛的打通,数据的清洗与标准化建设,同时还有随着管理场景的不断变化引发的系统功能与技术迭代,以上这一切企业都必须要用大量的真金白银来买单,如果不投入,不改善,直接影响的就是应用效果,而在现实中往往是部分企业领导总是以成本来衡量系统,从而导致后续迭代乏力。
综上所述,虽然大部分企业深知数字化转型建设是系统化的工程,但在真正落地的环节却缺乏精细化的管理与管控手段,缺乏足够的保障措施,那么企业该如何做?老杨认为企业需要有如下“八个一”保障:
一个专业的组织保障;
一个明确的需求保障;
一套可落地的方案保障;
一个清晰的实现路径保障;
一个科学的专业的实施保障;
一套可执行的运营制度保障;
一个可持续的资金保障;
一套可持续迭代的技术保障;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14