京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Pandas json_normalize 函数使用教程介绍
json_normalize 是 Pandas 库中一个强大的函数,用于将嵌套的 JSON 数据规范化成平面的 DataFrame。这对于处理包含嵌套结构的 JSON 数据非常有用,使其更容易分析和操作。在本教程中,我们将深入介绍 json_normalize 函数,并通过通俗的例子帮助你理解其参数的作用。
安装 Pandas
首先,确保你已经安装了 Pandas。如果没有安装,可以使用以下命令进行安装:pip install pandas使用 json_normalize基本用法让我们从最基本的用法开始。假设有如下嵌套的 JSON 数据:{
"name":"John",
"age":30,
"address":{
"city":"New York",
"zip":"10001"
}
}
}
现在我们将使用 json_normalize 将其规范化成 DataFrame:import pandas as pd
# 嵌套的 JSON 数据
data = {
"name": "John",
"age": 30,
"address": {
"city": "New York",
"zip": "10001"
}
}
# 使用 json_normalize 规范化
df = pd.json_normalize(data)
# 打印 DataFrame
print(df)
print(df) 运行上述代码,你将得到一个包含规范化数据的 DataFrame。处理嵌套数组json_normalize 也可以处理包含嵌套数组的 JSON 数据。
考虑以下 JSON:{
"name":"John",
"age":30,
"skills":[
{"language":"Python", "level":"Intermediate"},
{"language":"JavaScript", "level":"Advanced"}
]
}
}
我们可以使用 record_path 参数指定要规范化的嵌套数组:# 嵌套数组的 JSON 数据
data_with_array = {
"name": "John",
"age": 30,
"skills": [
{"language": "Python", "level": "Intermediate"},
{"language": "JavaScript", "level": "Advanced"}
]
}
# 使用 json_normalize 规范化,指定嵌套数组路径
df_with_array = pd.json_normalize(data_with_array, record_path='skills')
# 打印 DataFrame
print(df_with_array)
通过指定 record_path 参数,我们将嵌套数组规范化成了 DataFrame。处理嵌套 JSONjson_normalize 还支持处理嵌套的 JSON 结构。
考虑以下 JSON: {
"name":"John",
"age":30,
"contact":{
"email":"john@example.com",
"phone":{
"home":"123-456-7890",
"work":"987-654-3210"
}
}
}
我们可以使用 sep 参数指定嵌套层次的分隔符:# 嵌套 JSON 数据
data_nested = {
"name": "John",
"age": 30,
"contact": {
"email": "john@example.com",
"phone": {
"home": "123-456-7890",
"work": "987-654-3210"
}
}
}
# 使用 json_normalize 规范化,指定嵌套层次分隔符
df_nested = pd.json_normalize(data_nested, sep='_')
# 打印 DataFrame
print(df_nested)
print(df_nested)在这个例子中,我们通过指定 sep 参数,将嵌套的 JSON 结构规范化成了 DataFrame。
总结
通过本教程,你学习了如何使用 Pandas 中的 json_normalize 函数将嵌套的 JSON 数据规范化成易于处理的 DataFrame。我们介绍了基本用法以及如何处理嵌套数组和嵌套 JSON 结构。希望这些通俗易懂的例子能够帮助你更好地理解 json_normalize 函数的使用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31