京公网安备 11010802034615号
经营许可证编号:京B2-20210330
导读:在竞争中,了解对手是至关重要的。无论是个人的职业规划还是企业的战略规划,都需要对竞争对手进行深入的分析。在业务领域,了解竞品的商业模式和营销渠道等同样重要,通过对比和剖析,找到自己的优势和机会,从而在竞争中占据有利地位。这就是竞品分析的核心思想。
1. 什么是竞品分析竞品分析是对竞争对手的产品进行全面、多角度的分析,旨在识别自己与竞品的优势和劣势,找到产品的增长点和改进点,发挥自己的长处,弥补短处,并关注市场环境的变化,帮助公司在日益激烈的竞争环境中找到最合适的方向或做出前瞻性的布局。
2. 竞品分析的基本思路
1)明确分析目标首先要明确竞品分析的目标。不同的目标意味着不同的侧重点。例如,如果目标是提高销售额,那么应该围绕营销策略等内容进行分析,结合自己产品的客户特点,优化营销方式,提高营销效果。又如,如果想确定是否进入某个领域,可以选择几个主要竞品进行横向对比,研究市场规模、竞争态势、产品差异等因素,预测行业发展趋势,从而决定是否进入。
2)筛选竞品在选择竞品之前,首先要了解竞品的分类:直接竞品、间接竞品、替代品、参照品。然后根据分析目的进行筛选。不是所有的竞品都值得分析,而是要选择有价值、有深度的竞品进行分析。
3)确定分析维度竞品分析是一个系统的过程,需要提前构思从哪些方面、哪些角度进行分析。例如:- 产品层面:从产品定位、功能、技术、体验等方面进行分析,找出产品的优势和不足,确定核心竞争力和优化方向。- 用户层面:从产品用户的画像特征进行分析,找出与竞品用户群的不同之处,分析原因和可能拓展的用户群体。- 营销运营层面:从营销和运营的角度出发,比较竞品的营销和运营模式的差异,取其精华,结合自身业务特点,找到适合自己的营销和运营策略。
4)收集竞品信息可以通过多种途径获取竞品信息,如官方渠道公开资料、第三方竞品平台、用户调研、互联网行业指数等。常见的信息来源包括行业网站、咨询公司的行业报告、行业内的意见领袖的社交媒体账号、知乎上关于相关行业的提问和回答等。此外,还可以通过参与行业社群了解行业整体概况,或者“打入竞品的用户社群”去了解特定竞品。在与用户交流的过程中,要注意适度看待用户对产品的看法,同时询问他们是否使用过其他同类产品,以及他们的体验和感受。此外,还可以长期使用竞争对手的产品,关注对方员工的社交媒体账号等。这些信息通常会透露出竞争对手未来的发展方向和业务情况。最后,还可以参考与行业相关的专业书籍、杂志等资源。
5)确认分析方法信息收集完成后,需要对其进行筛选、分类、剔除、评级等处理,提取有效信息,并对有效信息进行分析。不同的分析目标需要选择不同的分析方法,常见的竞品分析方法包括精益画布、用户体验要素分析法、比较法、四象限分析法、PEST分析、波特五力模型、SWOT分析等。
6)输出分析结果根据上述信息和分析结果,得出客观的结论,并对这些结论进行解读。从产品改进、市场发展、公司策略等方面提出相应的、可执行的、全面的建议方案或报告。需要注意的是,市场竞争异常激烈,数据造假的情况并不少见,因此在数据采集和结论推断时必须谨慎,必要时要从多个角度进行交叉验证。另外,对于数据和观点的描述要尽量客观公正,避免主观判断影响决策。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23