
SPSS分析技术:卡方检验;问卷(试卷)信度分析原理
今天介绍的是卡方检验。卡方检验是以卡方分布为基础的一种检验方法,主要用于分类变量(定义数据和定序数据),适用于频率数据的分析数据。常用于检验总体分布是否服从指定的分布的一种非参数检验的统计方法,可用于两个或多个频率间的比较、样本关联度分析和拟合优度检验等。拟合优度检验就是检验通过检验某一变量的实际观测频率和期望理论频率是否吻合,若吻合,则证明样本在该变量上的频率分布与总体理论分布相同。
卡方分布
卡方检验的基本假设
原假设:实际观测频率和期望理论频率分布之间无显著差异。
备择假设:实际观测频率和期望理论频率分布之间显著差异。
卡方统计量
很显然,实际频率与期望频率越接近,卡方值就越小。若卡方值为0,则上式中分子的每一项都必须是0,这意味着k类中每一类观察频率与期望频率完全一样,即完全拟合。卡方统计量可以用来测度实际观察频率与期望频率之间的拟合程度。
卡方检验的应用
推断耽搁样本的频率分布是否等于某种给定的理论分布;
检验两个及两个以上样本的总体分布是否相同;
定性资料的关联性分析;
线性趋势分析;
卡方检验步骤
建立虚无假设。为考察变量之间差异的显著性,卡方检验首先要建立虚无假设,一般假设为实际频率和理论频率无显著差异。
计算理论频率和卡方值。
依据分析计算结果进行统计推断。根据自由度和设定的显著性水平值,查卡方值表,将实际计算所得的卡方值在相应的显著水平上进行比较,据此做出接受或拒绝虚无假设的判断。
案例分析
社会科学研究领域,很多的研究数据都来自问卷调查。问卷收集数据效果的好坏,需要做信度分析,信度分析就是为了看看问卷的填写者是否是胡乱填写答案的,如果很大部分的问卷填写者都是随机选择选项的,选项的分布就会比较均匀,卡方检验可以用来判断每题答案的分布是否均值(显著性差异)。
某学校社科院为真实了解学生的英语学习态度,随机抽取部分学生做问卷调查,其中包括这样两个问题:1、你认为英语学习态度的决定因素是什么?2、你认为当前的大学生英语学习态度如何?
分析步骤
1、选择菜单【分析】-【非参数检验】-【旧对话框】-【卡方】,打开卡方检验对话框;将第1题:你认为英语学习态度的决定因素是什么?和第2题:你认为当前的大学生英语学习态度如何?选入检验变量列表。
2、期望范围;用于设定需检验的变量的取值范围,在此范围之外的取值将不进入分析。此设置共两个选项,即“从数据中获取”和“使用指定范围”。“从数据中获取”:表示检验变量的取值范围使用数据文件的最大值和最小值所确定的范围,该项为系统默认设置。“使用指定的范围”:即自行制定检验的取值范围,激活该项后,研究者可在“下限”和“上限”中分别输入检验范围的下限和上限。本例选择系统默认项。
3、期望值;用于指定已知总体的各分类构成比。包含“所有类别相等”和“值”两个选项。“所有类别相等”也就是设定各类别构成比例相等,即意味着检验的总体是服从均匀分布的。此为系统默认项。“值”用于自行定义类别构成的比例,每输入一个值后单击“添加”,系统自动将其输入右边的列表框。输入数值必须大于0,重复以上操作直到输完为止。输入值时要注意输入顺序一定要和变量递增顺序一致。本例选择此项设置。
4、检验精度设置;单击【精确】,打开精确检验。它包括3个选项:“仅渐进法”、“Monte Carlo”和“精确”。
“仅渐进法”:该项给出基于检验统计的渐进分布的显著性水平。渐进显著性是基于大数据集的假设,通常小于0.05的值被认为是显著的。如果数据集较小或者分布较差,它可能不会很好地指示显著性。该项为系统默认选项。
“Monte Carlo”:该项给出精确显著性水平的无偏估计,其计算方法是从与观察到的表具有相同维数和行列界限的参考报集中重复地取样。Monte Carlo法使分析不依赖于渐进法所必需的假设就能估计精确的显著性。当数据集太大而无法计算精确的显著性,而且数据又不满足渐进法的假设时,此法最有用。其中的“置信度”默认值为99%;“样本数”用于指定计算的样本数目,样本数目越大显著性水平越可靠,默认值为10000。
“精确”:该项用于精确地计算观察到的输出或更极端的输入的概率。通常认为小于0.05的显著性水平是显著的,表示行变量和列变量之间存在的某种关系。“每个检验的时间限制为”用于限定进行每个检验所使用的最长时间,如果超过30min,则用“Monte Carlo”法比较合适。
对于该项,本例选择系统默认设置,设置完毕后,单击“继续”。
5、输入结果检验;单击“确定”,输出卡方检验结果。
结果解读
由本次卡方检验的统计表可得:“题1”和“题2”的卡方值分别为243.195和85.366,而渐进显著性P值均为0.000,小于0.001,拒绝虚无假设,说明“题1”和“题2”的选项被实际勾选的频率与期望值差异非常显著。也就是说,大部分的问卷的填写者有能够认真的填写问卷,问卷收集数据的结果可信.数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25