京公网安备 11010802034615号
经营许可证编号:京B2-20210330
微信号后台有非常之多的关于回归分析的留言,作为最常见的统计分析方法,在工作生活中的应用需求量巨大,这两天已经为大家选好了案例数据,先从一元线性回归分析开始。
一元线性回归,顾名思义,仅有一个自变量的回归模型,研究的是一个因素对结果的影响,可以用于预测,也经常被称之为简单线性回归分析。它的模型表达式为:
Y=a+bX+e
回归的过程就是要确定截距a和回归系数b的具体值,当然前提条件是模型具备统计学意义。
看案例:
案例数据很好理解,是常见的销售数据,反映的是某公司太阳镜一年12个月的具体销售情况。试分析当广告费用为15万元时,预测当月的销售量值。
几乎所有的回归分析问题,首先都从一个散点图开始,散点图能够快速而且直观的看到自变量和应变量之间是否包含线性关系,如果图形上看不出明显线性关系的话,后续的分析效果也不会太好。
散点图菜单步骤:图形→旧对话框→散点图→简单算点图,自变量广告费用用作X轴,销售量用作Y轴。
由散点图可以看出,增加广告投入销售量随之上升,一个正相关线性关系,图示的作用在于让我们对预测销售量充满信心,接下来开始一元线性回归。
一调出主面板
菜单栏中点击【分析】→【回归】→【线性】,弹出线性回归主功能面板,销售量作为因变量,广告费用作为自变量,散点图显示二者有较强的线性关系,我们将采取强制【输入】的方法要求建立一元回归模型。
二统计按钮参数设置
默认勾选回归系数的【估算值】,要求SPSS软件为我们输出回归系数,也就是模型中的参数b,同时默认勾选【模型模拟】,要求软件帮助我们建议回归模型是否具有统计学意义。
以上这两个参数是线性回归分析必选设置,不能忽略不计。在此基础上,我们可以根据实际需要选择其他参数。
本案例勾选【德宾沃森】,要求就模型残差进行Durbin Watson检验,用于判断残差是否独立,作为一个基础条件来判断数据是否适合做线性回归。
三图按钮参数设置
上半部分有些复杂,允许我们定制残差的图形,作为入门理解,此处建议直接勾选底部【直方图】和【正态概率图】,要求软件输出标准化残差图,同样用于判断数据是否适合进行线性回归。
四保存按钮参数设置
我们此处分析的目的是为了利用广告费用来预测销售量,保存按钮参数与预测和残差有关,可以勾选【未标准化】预测值。
在这个对话框上面,有许多参数可选,严谨态度出发的话,建议在这里深入学习,本例暂时不讨论。
五选项按钮参数设置
这里建议接受软件默认选项即可。
主要参数基本设置完成,现在点击主面板下方的【确定】按钮,要求SPSS开始执行此次简单线性回归分析过程,我们坐等结果。
六主要结果解释
1、模型摘要表
第三列R方,在线性回归中也称为判定系数,用于判定线性方程拟合优度的重要指标,体现了回归模型解释因变量变异的能力,通常认为R方需达到60%,最好是80%以上,当然是接近1更好。
本例R方=0.93,初步判断模型拟合效果良好。
2、方差分析表
刚才我们建立的回归模型是不是有统计意义,增加广告费用可销售量这样的线性关系是否显著,方差分析表可以回答这些问题。
直接读取最后一列,显著性值=0.000<0.01<0.05,表明由自变量“广告费用”和因变量“销售量”建立的线性关系回归模型具有极显著的统计学意义。
3、回归系数表
这是有关此处建模的最直接结果,读取未标准化系数,我们可以轻松写出模型表达式,如下:
Y=76.407+7.662X
关键的是,自变量广告费用的回归系数通过检验,t检验原假设回归系数没有意义,由最后一列回归系数显著性值=0.000<0.01<0.05,表明回归系数b存在,有统计学意义,广告费用与销售量之间是正比关系,而且极显著。
OK,现在我们有了回归模型表达式在手里,心里总会油然沉甸甸的,因为就连小学生都知道,只要把广告费用的具体值带入回归方程式中,就可以轻松计算出对应的销售量数据。
不急,在开始预测前还有一项关键操作,我们需要检验数据是否可以做回归分析,它对数据的要求是苛刻的,有必要就残差进行分析。
七适用性检验
1、残差正态性检验
从标准化残差直方图来看,呈一个倒扣的钟形,左右两侧不完全对称,有一定瑕疵;从标准化残差的P-P图来看,散点并没有全部靠近斜线,并不完美,综合而言,残差正态性结果不是最好的,当然在现实分析当中,理想状态的正态并不多见,接近或近似即可考虑接受。
2、模型残差独立性检验
采用Durbin Watson检验来判断,回过头来再看模型摘要表。
DW=1.464,查询 Durbin Watson table 可以发现本例DW值恰好出在无自相关性的值域之中,认定残差独立,通过检验。
实际上关于回归模型的适应性检验还有其他项目,比如异常点、共线性等检验项目,本例暂不展开,有兴趣的读者可以自行学习。
根据以上残差正态性和残差独立性检验的结果,本例认为案例数据基本满足线性回归要求(值得在其他应用中讨论,本例仅展示主要过程),所建立的模型可根据拟合质量进行预测。
八预测
通过前面的一系列分析和论证,我们现在已经得到回归模型的方程式:Y=76.407+7.662X,
我们的预测任务是当广告投入达15万元时,太阳镜的销售量,具体计算:Y=76.407+7.662*15=191.337,
至此,建立了广告和销售量之间的线性回归模型,并且实施了预测,那么模型的准确性到底如何呢,有待最终实际销售比对分析。本例结束。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12