
大数据如何创造业务价值
大数据驱动的客户关系管理
京东作为中国最大的B2C电商,积累了海量的高质量客户数据,结合当前AI的热潮,让京东的未来充满了想象力。那么,大数据的价值到底在哪里?只是统计指标、生成报表支持业务决策吗?和大数据相关的机器学习和算法就是用复杂的数学模型来将某些指标数据算的更准吗?大数据的应用是不是就是提升转化率?大数据对业务的价值和作用在哪里?
1 企业经营面临的挑战
让我们从一个企业的最终表现——财务报表出发,剖析企业业务发展面临的挑战和待解决的问题,从而引出大数据和机器学习的机遇、挑战及其中所蕴藏着的巨大价值。
企业的财务报表,会给出公司在前一阶段经营中的各项指标和重要举措;财报的发布,会极大的影响一个企业的估值。其中的几个关键指标,充分说明了企业经营面临的挑战和业务关注的重点。
现金流量
现金流量是第一个指标,展示了企业经营的健康程度。现金流为正,说明企业经营状况健康,有大量现金盈余。现金盈余是由企业的快速销售回款和GMV增长所带来的。
利润率
其次是利润率,也就是毛利。说明了企业日常经营是否赚钱。同样的行业里,利润率基本一致。
周转率
准确来说是高周转率,是企业尤其是零售企业盈利和获胜的关键。周转率与毛利相乘,得到企业总体的运营利润水平。周转率越高,毛利就会越高。周转率的高低受两个能力影响,企业的库存周转的能力,以及销售的速度。
销售速度
销售速度,即销售额的速度,同样受多个因素的影响,一是活跃客户数,一般称为客流量,二是转化率,即销售漏斗的逐层转化。企业会投入大量资源进行广告营销,以提高活跃客户数量,吸引客流量,实现销售额的快速增长。
企业通过不断加大营销的投入和力度,不断发展新用户的数量,不断提升客流量。活跃用户数的快速增长,就产生了销售额的快速增长。
2 营销极限
产生活跃客户的方法,主要是通过各种渠道的营销活动。各种营销活动的策划和资源的投入是企业日常经营的重点。包括策划各种促销活动,各种优惠措施,在线或离线的各种广告。
为了销售额不断增长,企业的营销活动会越来越频繁。这种营销活动提升活跃用户是有边界的,即你的目标用户的全体,尤其是有购买能力的人群。通过吸引新客户来保持快速增长,会逐渐达到一个极限;因此在市场成熟后,企业还是要回到老客户的经营和活跃度的提升上。
促销活动数量和强度的不断增长,会不断消耗客户的注意力。客户会收到越来越多的促销信息,并逐渐变得对促销信息不再有敏感;即使优惠力度越来越大,客户的购买欲望却越来越低;甚至不胜打扰,屏蔽营销信息。结果,营销活动的转化率不断降低,效果越来越差,活跃客户数却不再有明显增长。到了这种程度,就可以称其为过度营销。
3大数据和机器学习
企业的增长,最终是要从外生性的扩张逐渐转变为内生性增长的。精细化的客户经营,需要大数据的支撑,需要机器学习和人工智能的实现,需要对客户的需求和满意度做精准的建模和把握。
当前的企业都会利用大数据,建立客户的需求偏好模型、点击率预估模型、优惠促销响应模型、客户流失预警模型等一系列客户模型。这些模型,在客户价值管理的某些具体应用点上,发挥了重要作用,提升了当期的转化率。
但是,要实现客户价值最大化,还需要从整个公司的视角,充分利用大数据,将目标从短期和具体应用点上的价值最大化,切换为长期的、全局的客户价值的最大化,实现客户和企业的双赢。
4客户资源价值最大化
如果我们将客户看作一种资源,这种资源的使用是有代价的,其恢复也是有一定周期的。过度频繁使用客户资源来做营销,会导致资源的枯竭。客户的购买需求和对营销信息的注意力质量会不断下降,直至最终耗竭。从而产生客户流失。
作为公司共同资源的客户群,如果没有合理的使用规则,就会产生经济学中的“公地悲剧”效应。即大家都无节制的使用公共资源,从而导致客户资源的耗竭。
解决这种问题,需要进行客户资源成本化,并从总体上合理规划客户资源的使用,实现客户价值的全局最大化。这需要通过大数据和机器学习,用全局最优的分配算法来代替局部的业务规则决策,实现客户服务的精细化。
可以在大数据和机器学习的支撑下,实现以下优化:
准确评估客户对公司的粘性和满意度,计算营销投入产出比时考虑客户资源的损耗,以客户价值最大的视角来展开客户营销。
对客户资源进行精细化经营,通过大数据和机器学习实现对个体客户需求的深层次把握,实现客户与商品的最佳匹配,降低客户注意力资源的浪费。
对客户进行全生命周期价值估计,从只关注和优化短期转化率,转变为关注客户长期价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25