
R语言如何导入数据
在使用R的时候,我们肯定需要导入数据,现在总结一下如何导入不同类型的数据:
1.使用键盘输入数据
在导入数据比较少的时候,我们使用这种方法。R中的函数 edit() 会自动调用一个允许手动输入数据的文本编辑器。具体步骤如下:
(1) 创建一个空数据框(或矩阵) ,其中变量名和变量的模式需与理想中的最终数据集一致;
(2) 针对这个数据对象调用文本编辑器,输入你的数据,并将结果保存回此数据对象中。在下例中,你将创建一个名为 mydata 的数据框,它含有三个变量: age (数值型) 、 height(字符型)和 weight (数值型) 。然后通过edit()函数调用文本编辑器,键入数据,最后保存结果。编辑器界面如下,我们在这个界面可以输入变量值,也可以改变变量类型。
[plain] view plain copy
mydata<-data.frame(age=numeric(0),height=numeric(0),weight=numeric(0))
edit(mydata)
需要注意的是函数 edit() 事实上是在对象的一个副本上进行操作的。如果你没有将它其赋值到一个对象,你的所有修改将会全部丢失!
2.导入带分隔符的文本文件数据/CSV文件
read.table() 可以从带分隔符的文本文件中导入数据。此函数可读入一个表格格式的文件并将其保存为一个数据框。其语法如下:
read.table(file,header=value,sep="delimter",row.names="name")
file表示文件名,header表示表的首行是否包含变量值的逻辑值,sep 用来指定分隔数据的分隔符, row.names 用以指定一个或多个表示行标识符的变量,是个一可选参数,他还有许多参数,可以通过帮助文档进行查看。
3.导入Excel数据
虽然Excel可能是世界上最流行的数据分析工具,但R如果直接读取Excel数据还是比较困难的。
但我们可以在Excel中将数据将其导出为一个逗号分隔文件(csv) ,并使用前文描述的方式将其导入R中。在Windows系统中,你也可以使用 RODBC 包来访问Excel文件。但它好像只能在32位的R软件上面使用。虽然也有一些包可以这些问题,比如gdata,XLConnect,xlsReadWrite等,但它的有许多前提要求,比如Java环境,Per,或者32-bit R。因此一般情况将数据转换为csv文件或者将数据导入到数据库在导入在R。
4.导入XML数据
强大的R中有若干用于处理XML文件的包。 XML 包允许用户读取、写入和操作XML文件。因为我还没有遇到这种数据,因此还不太清楚xml包大体如何使用,感兴趣的朋友可以下载xml包,通过帮助文档进行学习。
5.从网页抓取数据
不仅Python可以爬取网页数据,R也可以在Web数据抓取。在这个的过程中,用户可以从互联网上提取嵌入在网页中的信息,并将其保存为R中的数据结构以做进一步的分析。 完成这个任务的一种途径是使用函数 readLines()下载网页,然后使用如 grep() 和 gsub() 一类的函数处理它。对于结构复杂的网页,可以使用RCurl 包和 XML 包来提取其中想要的信息。
6.导入SPSS数据
我们可以调用通过 foreign 包中的函数 read.spss() 将SPSS数据集可以导入到R中,也可以使用 Hmisc 包中的 spss.get() 函数。函数 spss.get() 是对 read. spss() 的一个封装,它可以为你自动设置后者的许多参数,让整个转换过程更加简单一致,最后得到数据分析人员所期望的结果。使用的时候我们只需要安装Hmisc 包,在较新的R中foreign 包已被默认安装。
[plain] view plain copy
mydata<-spss.get("data.sav",use.value.labels=TRUE)
这段代码中,data.sav 是要导入的SPSS数据文件, use.value.labels=TRUE 表示让函数将带有值标签的变量导入为R中水平对应相同的因子, mydataframe 是导入后的R数据框。
7.读入数据库数据
在访问数据库的时候,我们都需要一个odbc驱动 我们需要下载安装RODBC包。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25