京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS分析技术:曲线回归
在大量的回归分析中,变量之间的关系都是线性关系,或是能够被转化为线性关系。然而,也存在着许多非线性的关系。例如,在匀变速直线运动中,运动距离与时间之间的关系就是二次函数关系;自由落体运动、抛物轨迹等都是非线性关系。今天要介绍的曲线回归,就是研究因变量与自变量之间的非线性关系,并从中查找到回归方程的一种技术。
SPSS曲线回归
SPSS中的曲线回归,对数据有两个要求:
只处理仅有一个自变量的曲线方程;
只处理满足本质是线性关系的曲线方程。本质是线性关系是指变量之间的关系虽然在形式上呈现为非线性关系,但是通过数据变换,仍然可以转化为线性关系。例如,对于三次曲线函数进行变化:
SPSS可实施曲线回归的曲线包括:二次曲线、三次曲线、复合曲线、增长曲线、指数曲线、对数曲线、S曲线、幂曲线、逆函数和逻辑函数共10种类型。这些类型已经基本能够满足常规分析的需要。下面表格列出主要曲线类型及其表达式:
曲线回归步骤
1、利用散点图,初步判断曲线类型
这要求大家熟悉曲线的形状。由于在具体的回归分析中,可能的曲线类型种类繁多,为了减少曲线估计的盲目性,通常先用散点图观测自变量与因变量之间的关系,判定因变量与自变量是否存在清晰的逻辑关系。如果散点图中的散点向曲线附近几种,比较接近于一条曲线,则初步判断可以做曲线回归分析,否则无法做曲线估计。对于可作曲线估计的数据,先认真观察曲线的形状,判定大概属于哪类曲线,是抛物线,还是对数曲线、指数曲线。
2、执行曲线回归分析
启动曲线估计功能,在“曲线估计”的配置界面下,正确地设置因变量和自变量,并可同时选择若干种曲线类型。在完成了曲线回归的计算机处理后,根据计算机的输出结果,参考判定系数R方值和检验概率Sig值,选择最恰当的曲线类型。
3、最后根据曲线类型的各个系数值,写出最终的函数式。
案例分析
某网络服务提供商跟踪其网络上随时间变化的受病毒感染的电子邮件的流量百分比。请利用曲线估计的技术,分析时间与病毒感染流量百分比之间的关系,并获得最终的回归方程式。数据如下:
分析步骤
1、选择菜单【图形】-【旧对话框】-【散点/点状】命令,然后从中选择【简单分布】。从散点图的结果来看,时间与感染率之间的关系可能是二次曲线或三次曲线。
2、选择菜单【分析】-【回归】-【曲线估计】命令,启动曲线估计对话框,填入参数,如下图所示:
3、结果解读
从模型和参数评估表格中可以发现,二次曲线模型和三次曲线模型的R方值分别为0.653和0.783,说明两个回归模型的质量都很好。此外,两个模型的显著性结果都是0.000,也印证了上面阐述的结论。上述表格也输出了回归模型参数结果,根据回归参数,可以得到两个回归模型公式:
结果中还输出了带拟合曲线的散点图:
虽然二次模型和三次模型的回归分析结果都很好,可以被用于未来数据的预测,但是从上图可以发现,二次模型和三次模型对未来因变量的预测趋势是截然不同的,一个向上,一个向下。这也说明回归分析不是一劳永逸的技术,需要不断根据发生的数据进行判断和修正,这样才能真正达到预测的效果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12