
用户调研、竞品分析、数据分析、行业分析4个方法,轻松挖掘产品需求
一般产品的需求来源,除了老板和其他同事(运营或市场)的业务需求,还可以来自以下几个方面:
1.用户调研
用户调研的手法有很多,如问卷调查、用户访谈。这类方法的好处是操作简单、反馈周期短、贴近用户。但是,用户调研也很容易产生比较大的偏差。对此,可以从调研方和调研对象两方面进行归纳和建议。
调研方的先入为主
在设计调查问卷的时候,我们往往会有先入为主的毛病,自己挖个洞引导用户往里钻。这样做可以获得自己想要的“调研真相”,但也远离了真正的用户需求。所以在进行用户调研的时候一定要遵守客观、谨慎的原则,而不是自己挖个洞然后引导用户往里钻。
闷声不吭的主流用户
我们可以将用户分为3种类型:
专家型用户:热衷于探索新功能,并提出各种用户反馈和建议,恨不能有个个性化定制版本的产品。这类用户虽然很积极,但占比很少;
随机型用户:如果学习成本足够低,这类用户还是会愿意使用新功能的。他们比专家型用户多,但也只是少数;
主流用户:基本只用几个核心功能,一声不吭的用,用完就走。这类用户占至少80%。
而很多时候,会响应调研、积极反馈的,往往就是占比最少的专家型用户,他们兴高采烈的提需求,产品喜出望外的接需求,最终做出来的是大部分用户都不会用的功能。因此,在获得调研报告或用户反馈时,必须理清用户属于哪类、需求是否为核心需求。
2.竞品分析
竞品分析算是做产品的基本功和日常任务了。总的来说,竞品分析的作用就是:
更清晰的了解市场态势及走向,让团队跟上趋势;
更具体的分析业务场景,更细致的把握用户需求;
借鉴竞品优点,规避竞品缺点。
竞品分析的流程
一般来说,竞品分析的姿势是这样的:
确定竞品分析目标。明确竞品分析的目的;圈定竞品分析的边界,选择合适的分析对象。
确定分析维度。对产品目标进行拆解,分析了解用户需求,据此获得竞品分析的维度:分析的侧重点,以及分析时需要采用什么标准。
进行对比分析。按照步骤二所得维度,对所选竞品进行逐项对比、分析优劣。
总结及建议。总结对比分析的收获,给出有建设性的解决方案。
中庸的困局
然而,就算掌握了分析流程,也未必给得出具有建设性建议的竞品分析报告。
一来,任何分析都没有银弹可言,流程的合理无法弥补分析思维的不足;
二来,随着互联网发展愈加成熟,产品愈发同质化——就连当年特立独行的苹果手机,也越来越像安卓机子了——分析愈发中庸的竞品往往只能得出愈发中庸的结论。
3.数据分析
数据分析所得来的用户需求,会比用户调研的更靠谱些。因为很多时候,用户表达的都是自己想要的,而不是真正需要的,但用户行为所遗留下的数据却是很诚实的。
据说,微信出来之前,微博的产品做过数据分析,发现有30%左右的用户非常高频的使用发私信功能(即为移动IM),但微博并没有重视这一点,这个疏漏也间接造就了微信等一大波移动IM的崛起。
数据分析的流程
数据分析一般的流程如下,与产品开发及运营紧密结合,从而做到让数据引导产品运营及需求管理:
屁股决定脑袋的分析
比起用户调研和竞品分析,数据分析更加系统化——这句话反过来说,就是坑也更多:
数据来源:必须保证源数据的真实、完整及准确。为此,必须和数据挖掘的技术人员以及和业务相关的运营人员说明清楚数据分析的目的、数据的范围及数据统计的口径;
数据备份:处理前请备份,处理前请备份,处理前请备份——重要的事情说三遍。
屁股决定脑袋:要从一堆数据里提取出具备说服力的结论不容易,但要为自己的论点拼凑出一套数据却很简单——虽然这套数据最终也是站不住脚的——在做数据分析的时候,客观谨慎是必须的原则。
4.行业分析
如果说,用户调研和竞品分析是看现在,数据分析是看过去,那么,行业分析就是看未来。行业分析的方法论有波特五力分析模型、SCP产品组织理论等。
行业分析可帮助产品团队抓住市场趋势,做到攻守有据。
行业分析的理论模型发展至今,已非常成熟。需要注意的是,行业分析的第一个步骤——也是重点和难点——就是如何划分行业的范围。卖煤气炉的做行业分析时,要看的不仅仅是其他卖煤气炉的,还得看看人家的电磁炉。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27