
用户调研、竞品分析、数据分析、行业分析4个方法,轻松挖掘产品需求
一般产品的需求来源,除了老板和其他同事(运营或市场)的业务需求,还可以来自以下几个方面:
1.用户调研
用户调研的手法有很多,如问卷调查、用户访谈。这类方法的好处是操作简单、反馈周期短、贴近用户。但是,用户调研也很容易产生比较大的偏差。对此,可以从调研方和调研对象两方面进行归纳和建议。
调研方的先入为主
在设计调查问卷的时候,我们往往会有先入为主的毛病,自己挖个洞引导用户往里钻。这样做可以获得自己想要的“调研真相”,但也远离了真正的用户需求。所以在进行用户调研的时候一定要遵守客观、谨慎的原则,而不是自己挖个洞然后引导用户往里钻。
闷声不吭的主流用户
我们可以将用户分为3种类型:
专家型用户:热衷于探索新功能,并提出各种用户反馈和建议,恨不能有个个性化定制版本的产品。这类用户虽然很积极,但占比很少;
随机型用户:如果学习成本足够低,这类用户还是会愿意使用新功能的。他们比专家型用户多,但也只是少数;
主流用户:基本只用几个核心功能,一声不吭的用,用完就走。这类用户占至少80%。
而很多时候,会响应调研、积极反馈的,往往就是占比最少的专家型用户,他们兴高采烈的提需求,产品喜出望外的接需求,最终做出来的是大部分用户都不会用的功能。因此,在获得调研报告或用户反馈时,必须理清用户属于哪类、需求是否为核心需求。
2.竞品分析
竞品分析算是做产品的基本功和日常任务了。总的来说,竞品分析的作用就是:
更清晰的了解市场态势及走向,让团队跟上趋势;
更具体的分析业务场景,更细致的把握用户需求;
借鉴竞品优点,规避竞品缺点。
竞品分析的流程
一般来说,竞品分析的姿势是这样的:
确定竞品分析目标。明确竞品分析的目的;圈定竞品分析的边界,选择合适的分析对象。
确定分析维度。对产品目标进行拆解,分析了解用户需求,据此获得竞品分析的维度:分析的侧重点,以及分析时需要采用什么标准。
进行对比分析。按照步骤二所得维度,对所选竞品进行逐项对比、分析优劣。
总结及建议。总结对比分析的收获,给出有建设性的解决方案。
中庸的困局
然而,就算掌握了分析流程,也未必给得出具有建设性建议的竞品分析报告。
一来,任何分析都没有银弹可言,流程的合理无法弥补分析思维的不足;
二来,随着互联网发展愈加成熟,产品愈发同质化——就连当年特立独行的苹果手机,也越来越像安卓机子了——分析愈发中庸的竞品往往只能得出愈发中庸的结论。
3.数据分析
数据分析所得来的用户需求,会比用户调研的更靠谱些。因为很多时候,用户表达的都是自己想要的,而不是真正需要的,但用户行为所遗留下的数据却是很诚实的。
据说,微信出来之前,微博的产品做过数据分析,发现有30%左右的用户非常高频的使用发私信功能(即为移动IM),但微博并没有重视这一点,这个疏漏也间接造就了微信等一大波移动IM的崛起。
数据分析的流程
数据分析一般的流程如下,与产品开发及运营紧密结合,从而做到让数据引导产品运营及需求管理:
屁股决定脑袋的分析
比起用户调研和竞品分析,数据分析更加系统化——这句话反过来说,就是坑也更多:
数据来源:必须保证源数据的真实、完整及准确。为此,必须和数据挖掘的技术人员以及和业务相关的运营人员说明清楚数据分析的目的、数据的范围及数据统计的口径;
数据备份:处理前请备份,处理前请备份,处理前请备份——重要的事情说三遍。
屁股决定脑袋:要从一堆数据里提取出具备说服力的结论不容易,但要为自己的论点拼凑出一套数据却很简单——虽然这套数据最终也是站不住脚的——在做数据分析的时候,客观谨慎是必须的原则。
4.行业分析
如果说,用户调研和竞品分析是看现在,数据分析是看过去,那么,行业分析就是看未来。行业分析的方法论有波特五力分析模型、SCP产品组织理论等。
行业分析可帮助产品团队抓住市场趋势,做到攻守有据。
行业分析的理论模型发展至今,已非常成熟。需要注意的是,行业分析的第一个步骤——也是重点和难点——就是如何划分行业的范围。卖煤气炉的做行业分析时,要看的不仅仅是其他卖煤气炉的,还得看看人家的电磁炉。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 本课程 ...
2025-07-28CDA 数据分析师必备技能全解析 在数据驱动决策的时代,CDA 数据分析师作为连接数据与业务价值的桥梁,需要具备多元化的技能体系 ...
2025-07-28PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-28t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-28PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21