
SPSS应用之非参数检验
统计学的假设检验可以分为参数检验和非参数检验,参数检验是根据一些假设条件推算而来,当这些假设条件无法满足的时候,参数检验的效能会大打折扣,甚至出现错误的结果,而非参数检验通常是没有假设条件的,因此应用范围比参数检验要广。
非参数检验在不做任何假设的情况下,最大限度的使用样本信息,利用统计学、数学的方法和技巧构造统计量并加以检验,在某些情况下,非参数检验比参数检验拥有更高的效能,尽管如此,我们也不能一味的使用非参数检验,毕竟参数检验更加严谨,通常都是在数据不符合参数检验的条件是,才使用非参数检验,因此,对于数据的前期观察是非常重要的。
非参数检验方法非常多,但是绝大部分非参数检验方法都是基于秩和结来构造统计量的,SPSS中非参数检验是一个独立的过程,也保留了旧对话框,新对话框按照样本情况分类,根据样本情况来选择方法,并且更倾向于自动化分析,旧对话框的分类则不是很明确,分我们按照新对话框来进行介绍
分析—非参数检验—单样本
一、单样本
1.二项式检验
二项式检验也称为二项分布检验,用来检验样本是否来自二项分布,也就是检查样本的观测值的频数与某一特定二项分布下的期望频数是否一致。不仅可以针对于二分类变量,对于连续变量也可以当做二分类变量来处理,例如成绩的及格与否,产品的合格与否等。
本例中是想检验三门学科的及格率是否都在95%以上
2.卡方检验
卡方检验是最常用的多分类非参数检验,卡方统计量也广泛被其他检验所引用,卡方检验依据卡方分布,主要包括适应性检验和独立性检验,适应性检验用于检验实际观察频数与期望频数是否一致,独立性检验用于检验两组或多组计数资料是否相互独立。
3.K-S检验
全称为Kolmogorov-Smirnow检验,在探索性分析中,也曾出现过用它来检验是否服从正态分布。该检验属于非参数检验,用来检验某一单样本是否服从某一理论分布。
4.Wilcoxon符号秩检验
该检验将符号和秩相结合,效能比单纯的符号检验和秩和检验都高,因此比较常用
5.游程检验
我们知道样本的随机性很重要,而游程检验就是用来检验样本数据是否是随机抽取的。该检验的思想就是将样本转换为二分类变量,然后计算其游程个数进行检验。数据分析师培训
二、独立样本
独立样本可分为两独立样本和多独立样本,重点在于这些样本之间没有相关性,具体方法也有很多
三、相关样本
相关样本分为两配对样本和多独立样本,这些样本之间都存在相关性
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25