京公网安备 11010802034615号
经营许可证编号:京B2-20210330
使用R进行倾向得分匹配(PSM)
根据维基百科,倾向得分匹配(PSM)是一种用来评估处置效应的统计方法。广义说来,它将样本根据其特性分类,而不同类样本间的差异就可以看作处置效应的无偏估计。因此,PSM不仅仅是随机试验的一种替代方法,它也是流行病研究中进行样本比较的重要方法之一。让我们举个栗子:
与健康相关的生活质量(HRQOL)被认为是癌症治疗的重要结果之一。对癌症患者而言,最常用的HRQOL测度是通过欧洲癌症研究与治疗中心的调查问卷计算得出的。EORTC QLD-C30是一个由30个项目组成,包括5个功能量表,9个症状量表和一个全球生活质量量表的的问卷。所有量表都会给出一个0-100之间的得分。症状量表得分越高代表被调查人生活压力越大,其余两个量表得分越高代表生活质量越高。
然而,如果没有任何参照,直接对数据进行解释是很困难的。幸运的是,EORTC QLQ-C30问卷也在一些一般人群调查中使用,我们可以对比患者的得分和一般人群的得分差异,从而判断患者的负担症状和一些功能障碍是否能归因于癌症治疗。PSM在这里可以以年龄和性别等特征,将相似的患者和一般人群进行匹配。
生成两个随机数据框
由于我不希望在本文使用真实数据,我需要生成一些仿真数据。使用Wakefield包可以很容易地实现这个功能。
第一步,我们创建一个名为df.patients的数据框,我希望它包含250个病人的年龄和性别数据,所有病人的年龄都要在30-78岁之间,并且70%的病人被设定为男性。
set.seed(1234)
df.patients <- r_data_frame(n = 250,
age(x = 30:78,
name = 'Age'),
sex(x = c("Male", "Female"),
prob = c(0.70, 0.30),
name = "Sex"))
df.patients$Sample <- as.factor('Patients')
summary函数会返回创建的数据框的基本信息,如你所见,患者平均年龄为53.7岁,并且大约70%为男性。
summary(df.patients)
## Age Sex Sample
## Min. :30.00 Male :173 Patients:250
## 1st Qu.:42.00 Female: 77
## Median :54.00
## Mean :53.71
## 3rd Qu.:66.00
## Max. :78.00
第二步,我们需要创建另一个名为df.population的数据框。我希望这个数据集的数据和患者的有些不同,因此正常人群的年龄区间被设定为18-80岁,并且男女各占一半。
set.seed(1234)
df.population <- r_data_frame(n = 1000,
age(x = 18:80,
name = 'Age'),
sex(x = c("Male", "Female"),
prob = c(0.50, 0.50),
name = "Sex"))
df.population$Sample <- as.factor('Population')
下方表格显示样本平均年龄为49.5岁,男女比例也大致相等。
summary(df.population)
## Age Sex Sample
## Min. :18.00 Male :485 Population:1000
## 1st Qu.:34.00 Female:515
## Median :50.00
## Mean :49.46
## 3rd Qu.:65.00
## Max. :80.00
合并数据框
在匹配样本之前,我们需要把两个数据框合并。先生成一个新变量Group来代表观测来自哪个全体(逻辑型变量),再添加另一个变量Distress来反应个体的痛苦程度。Distress变量是利用Wakefield包中的age函数创建的,可以发现,女性承受的痛苦级别更高。
mydata <- rbind(df.patients, df.population)
mydata$Group <- as.logical(mydata$Sample == 'Patients')
mydata$Distress <- ifelsmydata <- rbind(df.patients, df.population)
mydata$Group <- as.logical(mydata$Sample == 'Patients')
mydata$Distress <- ifelse(mydata$Sex == 'Male', age(nrow(mydata), x = 0:42, name = 'Distress'),
age(nrow(mydata), x = 15:42, name = 'Distress'))
当我们比较两类样本的年龄和性别分布时,我们可以发现明显的区别:
pacman::p_load(tableone)
table1 <- CreateTableOne(vars = c('Age', 'Sex', 'Distress'),
data = mydata,
factorVars = 'Sex',
strata = 'Sample')
table1 <- print(table1,
printToggle = FALSE,
noSpaces = TRUE)
kable(table1[,1:3],
align = 'c',
caption = 'Table 1: Comparison of unmatched samples')
更进一步,我们还发现一般人群的痛苦程度显著较高。
样本匹配
现在,我们已经完成了全部的准备工作,可以开始使用MatchIT包中的matchit函数来匹配两类样本了。函数中method=‘nearest’的设定指明了使用近邻法进行匹配。其他方法包括,次分类,优化匹配等。ratio=1意味着这是一一配对。同时也请注意Group变量需要是逻辑型变量。
set.seed(1234)
match.it <- matchit(Group ~ Age + Sex, data = mydata, method="nearest", ratio=1)
a <- summary(match.it)
为了后续工作的便利,我们将summary函数的输出赋值给名为a的变量。
在匹配万样本后,一般人群样本量所见到了和患者样本一致(250个观测)。
kable(a$nn, digits = 2, align = 'c',
caption = 'Table 2: Sample sizes')
根据输出结果,匹配后的年龄和性别分布基本一致了。
kable(a$sum.matched[c(1,2,4)], digits = 2, align = 'c',
caption = 'Table 3: Summary of balance for matched data')
倾向得分的分布可以使用MatchIt包中的plot函数进行绘制。
plot(match.it, type = 'jitter', interactive = FALSE)
输出如下:
保存匹配样本
最后,让我们把匹配好的样本保存在df.match数据框里。
df.match <- match.data(match.it)[1:ncol(mydata)]
rm(df.patients, df.population)
现在pacman::p_load(tableone)
table4 <- CreateTableOne(vars = c('Age', 'Sex', 'Distress'),
data = df.match,
factorVars = 'Sex',
strata = 'Sample')
table4 <- print(table4,
printToggle = FALSE,
noSpaces = TRUE)
kable(table4[,1:3],
align = 'c',
caption = 'Table 4: Comparison of matched samples'),我们可以对比两类人群间痛苦程度的差异是否依旧显著。
由于p值为0.222,学生t检验的结果不再显著。因此,PSM帮助我们避免犯下第一类错误。
P.S.1:本文只用的所有包可通过如下代码加载:数据分析师培训
pacman::p_load(knitr, wakefield, MatchIt, tableone, captioner)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31