京公网安备 11010802034615号
经营许可证编号:京B2-20210330
使用R读取并查看数据
本篇文章介绍如何使用R语言读取并查看数据,包含一些最基础的函数使用方法和说明。后面还会陆续介绍数据清洗,匹配和提取等相关的操作。
查看函数帮助
对于新手来说,在使用R时最重要的是了解不同函数的使用方法。很多时候我们都是边用边学的状态,拿到一个函数如何快速的使用起来,最快捷的方法就是查看函数的帮助。在R中查看函数的帮助有两种方法,第一种是使用help,第二种是直接在函数前加问好(?)。R会直接显示出这个函数是使用方法,函数说明和示例。下面是查看具体的代码和帮助内容的截图。
help(read.csv)
?read.csv
除了使用帮助功能以外,还有一个重要操作是tab键,在输入函数的过程中按下tab键,R会自动给出推荐的函数名称以及参数,避免很多记忆和重复输入的工作。
准备工作
在R中进行任何操作和分析工作之前,先需要读取数据。保存在工作目录中的数据可以直接读取,非工作目录的其他位置在读取时需要指明路径。因此第一步工作是了解R的工作目录。下面是具体的代码,输入getwd函数,R返回当前的工作目录。
#查看工作目录
getwd()
[1] "C:/Users/Documents"
你也可以对R的工作目录进行更改,使用setwd函数可以更改工作目录的路径。下面是具体的代码。
#设置工作目录
setwd("C:\\Users\\ r")
设置好工作目录后,开始读取数据,并创建数据表。我们的数据在工作目录下,因此直接读取并命名为loandata。
#读取并创建数据表
loandata=data.frame(read.csv('loan_data.csv',header = 1))
数据概览
使用dim函数查看数据表的行列数,loandata包含30行,10列数据。
#查看数据行列数
dim(loandata)
[1] 30 10
查看列名称
使用names函数查看数据表的列名称,下面列出了loandata数据表所有列的列名称。
names(loandata)
内容概览
还有一种更加直观查看数据的方法,使用数据编辑器。在R中使用fix函数可以调出数据编辑器,数据编辑器类似excel的表格界面,在数据编辑器中可以对字段的名称及类型进行简单的修改。
#数据编辑器
fix(loandata)
查看数据表前10行
在处理的数据条目较多时,可以使用head函数查看数据表。默认情况下head函数显示数据表的前5行数据,我们也可以通过设置参数n的值来自定义显示的行数。下面是代码和结果截图,在代码中我们设置n=10来显示数据表的前10行。
#查看数据表前10行
head(loandata,n=10)
查看数据后10行
Tail函数与head函数功能类似,用来显示数据表的后5行数据,下面的代码中我们设置n=10来显示数据表的后10行。
#显示数据表后10行
tail(loandata,n=10)
查看数据类型
Typeof是查看不同字段数据类的函数,下面我们使用这个函数查看了代码数据表中贷款金额类型,显示为double型。
#查看贷款金额列数据类型
typeof(loandata$loan_amnt)
[1] "double"
验证数据类型
除了直接查看字段的数据类型外,还可以对数据类型进行验证。下面使用is.integer函数验证贷款金额字段是否为integer型。返回的结果为FALSE。说明这个字段不是integer型。
#验证贷款金额字段的数据类型 is.integer(loandata$loan_amnt) [1] FALSE
更改数据类型
查看或验证完数据类型后,还可以更改数据类型。下面我们使用as.integer函数将贷款金额字段由之前的double型改为integer型。
#更改贷款金额字段为integer型
loandata$loan_amnt=as.integer(loandata$loan_amnt)
再次使用typeof函数查看贷款金额列的数据类型,现在显示为integer型。
#查看贷款金额列数据类型
typeof(loandata$loan_amnt)
[1] "integer"
查看字段
使用数据表名称,$符号和列名称可以直接查看特定列中的内容,例如查看loandata表中的term字段。后面的很多操作都会使用到。
#查看贷款数据表中的期限列
loandata$term
描述统计
完成了数据表的导入,查看和修改数据类型操作后,我们可以开始对数据进行一些简单的统计和计算工作。R中的summary是描述统计函数,可以对整个数据表或某一类提供描述统计报告。
直接将表面写在summary函数中,可以得到整个数据表的描述统计报告,这里只包含数值类型的字段,非数值类型的字段无法进行描述统计。
#对数据表进行描述统计
summary(loandata)
输入数据表和字段名称可以得到特定字段的描述统计报告。下面是对代码数据表中的贷款金额进行描述统计的结果。描述统计报告中给出了贷款金额的最大值,最小值,中位数和四分位数等数据。
#对数据表进行描述统计
summary(loandata)
关键指标计算
除了描述统计外,还可以对数据表进行计算。首先是最基本的求和和计数。Sum是求和函数,在sum函数中输入制定的列就可以获得求和结果。下面是对贷款数据表中的贷款金额进行求和。
#对贷款金额字段求和
sum(loandata$loan_amnt)
[1] 233925
Length是R中的计数函数,下面代码对用户ID字段进行计数。数据表中共有30个用户ID。
#对贷款金额字段进行计数
length(loandata$member_id)
[1] 30
Unique是唯一值函数,配合计数函数length可以对唯一值进行计算。下面的代码中先对用户ID进行排重,然后进行计数。
#对用户ID字段取唯一值并进行计数
length(unique(loandata$member_id))
[1] 30
不同字段间也可以进行计算,并生成新的字段添加在数据表中。下面通过贷款利息和贷款金额字段相除获得贷款利率字段,保留两位小数添加在原贷款数据表中。
#贷款利率=贷款利息/贷款金额
loan_int=round((loandata$total_rec_int)/(loandata$loan_amnt),digits = 2)
#将贷款利率列合并到贷款数据表中,并查看前5行数据
head(cbind(loandata,loan_int))
下面的代码表示了贷款金额与贷款金额列的汇总值进行计算,获得每一笔贷款金额在总金额中的占比,并将这个贷款金额占比数据保留两位小数后添加到原数据表中。
#贷款金额占比=贷款金额/贷款金额汇总
loan_percent=round((loandata$loan_amnt)/sum(loandata$loan_amnt),digits = 2)
#将贷款金额占比合并到贷款数据表中
loandata=cbind(loandata,loan_percent)
#查看新生成的贷款数据表
head(loandata)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12