京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析报告价值百万or分文不值
曾经,咨询公司一份报告就能收取企业几十万、甚至于上百万。而今,矫枉过正,数据分析报告却常常被企业认为没有任何实际价值。我经常和企业交流,他们告诉我,需要的是能够为他带来直接价值的东西,比如广告投放能够直接带来收入,所以他们舍得投入;但是因为报告不能够对企业产生任何实际的价值,所以他们不需要数据分析报告。
的确,以往的咨询报告更多是大而全,比如说曾经看到很多大型企业采购某某个定向专题的报告,如《2016年手机终端市场的发展容量和发展规模专题报告》。而这种相对宽泛的报告太宏观、没有针对性、不要说对中小企业,即使是对运营商、银行、证券这样的全球500强企业,作用也非常有限,即使企业知道某个观点,也很难落到战略实施和具体工作当中去。
我今天想说的是针对一个具体企业、一个具体问题而开展的针对性的数据分析。而这种有针对性的数据报告,以往是相对比较少见的,主要是因为数据收集的方法和数据收集的来源相对局限,主要是依靠问卷调查、电话访问、街头拦截、访问小组座谈等等;但是在大数据时代已然开启的今天,有了更多的数据来源途径和数据获取手段,一份有效的大数据分析报告显然能够对企业产生很大的价值。
大数据分析报告不仅能够对某个具体领域的宏观经济趋势进行判断和预测;还可以把我们的触角深入到某一个社区、某一类人群、某一个具体的产品,来了解他们的真实情况;同时,我们还能够借助大数据分析的结果来制定精细化的线上广告投放策略或是做针对性的地面推广活动;而最终,我们把大数据分析的成果以大数据工具的形式固化,才能让我们的大数据效力持续。
也就是说,真正有价值的大数据分析报告能够在中宏观规划、微观/细分市场分析、方案执行和策略部署等方方面面为企业带来价值。
大数据分析报告大解剖!
很多企业不认可分析报告的价值,很大程度是不了解它的原力。今天索性告诉你整个分析思路、框架,帮助企业更好地认识、认可大数据分析报告的价值。
一、大数据报告怎么做出来的?认识大数据分析流程!
首先,我们要理解大数据分析的基本流程,一个完整的大数据分析流程包含了商业问题理解、数据理解、数据准备、数据分析、产出分析报告、提出解决方案6个环节,并且是一个闭环、不断优化的过程。对于企业,可能不需要掌握高难度的分析处理能力,但是掌握数据分析思路、数据思维和意识都是非常重要的。
二、大数据报告究竟研究了什么东西?解密大数据分析思路!
大数据报告根据功能来分,可分为4个常见类型:
1. 市场/行业分析:对某一个行业、细分领域的市场现状的分析、发展趋势预测;
2. 用户画像:了解用户的人群特征、某个产品的不同群体的用户行为差异;
3. 竞品监测:对同类产品的用户使用情况、市场情况、功能性能进行对比研究;
4. 经营分析/业务问题专题:企业经营中重大战略决策的分析或针对某具体业务问题进行专题分析,如营销效果评估等。
大数据是新生事物,所以很多人对大数据分析报告缺乏概念,所以我来对4种典型分析报告的分析思路进行一次解密,看看每一类的数据分析报告到底需要包括哪些因素(指标仅为列举,无法全面涵盖):
市场/行业分析
竞品监控
营销效果评估
三、数据来自哪里?不同数据渠道和来源的优劣势对比
数据来源分为内部和外部,内部数据是企业有意识进行埋点、收集、整合与储存所获得的数据资产(如何建立企业宽表,打好数据基础,我将在后面陆续给出干货,敬请期待)。一般来说,我们还会通过一些外部渠道获取数据:
1. 网页爬虫数据:通过程序在网页上把相关的信息采集下来;
2. SDK数据:游戏等应用中SDK自动打包回传的数据,像友盟、talkingdata,主要是基于SDK数据进行整合和处理分析;
3. 运营商数据:三大运营商运营、业务和管理三大领域大量的客户属性和上网行为数据,原力大数据平台的核心数据来源之一;
4. 咨询公司加工数据:咨询公司大量的调研活动所产生的统计级数据;
5. 定制数据:向数据拥有者/采集者提需求,根据你具体的条件再进行数据的采集工作;
一份报告的价值很大程度收数据源质量影响,因此我们需要注意是数据是否靠谱。检查数据是否靠谱最简单的方式是借助你熟悉的数据进行对比,验证数据口径和数据范围。其次,就是对数据采集的对象、过程和处理方法进行评估,看数据是否具有时效性、代表性。
四、大数据报告能够怎么用?场景应用列举
大数据能力应用的场景过去也分享过很多,在此就不累述。未来也会陆续不断地给大家分享帷策工作过程碰到的有趣的、典型的案例,有兴趣的朋友可以关注微信公众号“原力大数据”,第一时间收到大数据干货、案例、资讯。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08