
以下文章来源于接地气的陈老师 ,作者接地气的陈老师
经常有同学抱怨,说自己做的活动分析被人DISS,诸如:“分析不深入”“没有可落地结论”之类的批评。注意!并不是谁闹谁有理。有时候来自业务部门/面试官的批评是没道理的,要认真区分情况再说。一、活动分析的基本做法活动分析,有标准四步走:1、目标制定:清晰活动目标2、过程监控:监控活动执行3、结果复盘:看目标达成了没有4、过程诊断:如未达成,则回看执行过程,查找疏漏点。
做活动本身是一个“指哪打哪”,高度目标导向的事情。因此活动分析中,目标是最关键的,清晰了目标才好判定效果。活动过程监控,则是用来诊断问题的,一般采用漏斗分析法+对比分析法,看哪个环节掉链子。
比如针对1万名新用户派特定品类的优惠券,目标拉动其中5000人消费。活动流程,则是新用户登录后通过弹窗领券,之后进行消费。那活动分析,就先看是否有达成5000消费的目标。如果没有达成,再看哪个环节没做好。是派的券压根没人领,还是领了券没地方用(如下图)。
注意!活动是分三类的:类型一:为了提升总业绩,比如双十一,618。这种一般是冲量型活动,投入力度大,参与商品多,有可能分子活动。因此一般是看整体业绩目标是否达成。
类型二:为了达成特定目的,比如清库存。都已经到尾货期了,能多清一件算一件。这种时候一般不计较收益,而是达成目标即可。
类型三:为了定向提升收益,比如针对特定用户投一批优惠券,拉升消费。这时候一定要考核收益,不能让人白薅羊毛。最好直接设参照组,观察有/无活动时差异。如果不能设参照组,则一定要记录该群体活动前数据,作为对比。
虽然活动分析都是:“目标→执行→复盘→过程诊断”四件套,但是根据不同的类型,目标设法有差异,复盘方式自然也有差异,不能一锅炖。然而有些时候,恰恰业务部门自己脑子不清醒,导致活动组织混乱。这时候要是怪数据分析师做得不好,就是无理取闹了。二、典型的无理取闹问题一:提升总业绩的活动,不设总体目标。一张嘴“我做活动就是为了提升业绩,分析下我提升了多少”——废话!肯定是为了提升业绩呀,难不成为了减少吗。问题是,你要提升多少?不同的目标,投入力度,活动形式,宣传渠道都有差异,事先不考虑,事后咋复盘。
问题二:不事先考虑自然增长率。实际上,很多业务本身有自然波动,肯定要提前考虑呀,不然活动咋组织。而很多业务,活动方案就是不知道哪抄来的。这些业务事前不考虑周全,事后抓住数据分析师,拼命研究“自然增长率的800种算法”,企图通过修改自然增长率来起死回生……真是让人哭笑不得。
问题三:活动前不做基础准备。活动页面不埋点,活动编码随便写,活动券码瞎胡用,派券对象随意增删。上活动的时候只图快!省事!数据一塌糊涂,事后……事后分析个屁。
问题四:定向提升的活动,不设参照组。定向提升型活动是完全可以设参照组的,如果不设参照组,是很难看出来活动增量效果,自然没法深入分析。
问题五:设参照组不考虑特征差异。参照组不是随机拉一波人就成的,而是要考虑“哪些特征会影响结果”。比如已知高消费人群活动响应会高,则设参照组时,需保证参照组内高消费群体比例和活动组差不多,这样才有可比性。不然结果肯定不对。三、常见的自掘坟墓当然,也有些是数据分析师们自己惹祸,常见的,比如:
惹祸一:不管业务场景,强行上模型。我就见过有数据分析师拿营销费和GMV做回归分析,然后拿R平方值来解释营销活动“效果”的。被人怼了还说这些人不懂统计学,额……
惹祸二:主动配合业务事后算“自然增长率”。结果不管你咋算,业务都不满意,终于业务满意了,老板不满意!搞得自己里外不是人。
惹祸三:不找业务要目标,企图用各种奇怪的东西代替目标。
实际上,在活动分析中,业务惹的麻烦要比数据分析师多得多得多得多。大部分的问题,都是业务自己目标不清晰、考虑不周全、事先没准备所导致的,数据分析师要做的,更多是不要纵容这种瞎搞。如果条件不充分,就先给一些基础数据,同时反复向大家灌输正确做法。
有趣的是:老板是站在我们这边的。老板也讨厌业务事前不动脑子,事后乱找理由。所以大家一定要有信心,慢慢推动活动评估标准化,正规化四、更深入的做法当然,即使以上都做了,单凭一次活动,也有可能分析不出很深入的东西。因为一次活动能影响用户范围有限,给到用户选择也很少,所以很难充分了解到底是产品不行,活动设计不行,还是用户没需求。这种深入的洞察,是需要多次活动数据摆在一起看,才能发现的。
以下这些场景,都得至少做2次以上,才能在对比中发现问题。比如:
其实很多时候业务自己也是被逼的。有些公司缺少长期计划,业务总是为短期业绩下跌填坑。这时候,业务自己也没空想更多办法,只能每次都用老一套,事后再指望修改“自然增长率”为自己找理由。因此,做规范的活动分析,也能帮业务减负,让业务有合理的理由多做几次尝试积累经验,最终大家一起探索出切实可行的办法。
当然,不指望所有公司都有这么好的氛围,如果你在的公司,就是目标不清晰,活动方案抄抄改改,事后纠结自然增长率。那至少我们自己,可以把活动分好类,然后观察事前/事后差异,观察对大盘影响,这样积累的经验,也能用在下一家公司。
扫码添加老师微信,一起做数据分析达人!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28