
以下文章来源于接地气的陈老师 ,作者接地气的陈老师
数据驱动决策,是大家天天挂在嘴边的时髦词汇。可到底数据是如何驱动的?很少有同学真正看到过全流程。更有同学总疑惑:“自己被人追着屁股要数,感觉自己才是被驱着动的“。今天系统讲解一下,拒绝跟风。
1 最原始的决策流程
首先,做事情是否一定需要数据,答:完全不需要。理论上,做事情只要两横一个竖:干就完了奥力给!所以最简单、无脑的做事方式就是(如下图)
但是大家都知道,这么空洞的打鸡血喊口号,是种除了逼死员工以外没屁用的方法。因为实在太无脑了。干什么,怎么干,干成啥样,都不知道。
2 科学决策的雏形
因此这种原始的决策很快进入到第二阶段:三拍阶段(如下图)
这种三段式决策,已经具备了科学管理的雏形,并且随着80年代末、90年代初承包制的普及,大放异彩。以至于很多50、60后的领导以及受他们影响的70、80后领导,都还喜欢沿用:干什么,怎么干,干啥样这种三段式说法。在文章、书籍里也很普遍。
然而,这并不是真正意义上的科学管理。因为太粗糙了。特别是干什么,往往是领导自己拍脑袋定,他们最喜欢的口头禅是:“你先达成个小目标,挣它1个亿”至于为什么是1个亿,为什么非得挣钱而不是占领市场,从来没有深入分析与解释。决策拍脑袋的结果,就是当面拍胸脯,出事拍大腿。因此才有了“三拍”的戏称。
3 从粗放到精细
想要提升决策的精细化程度,就得引入数据度量和数据分析,可以说,数据分析天生是为科学管理服务的。有了数据的支持,能够做大量精细化管理。
决策前:
1、量化评估经营现状,收入、支出、利润。
2、根据市场、对手、消费者数据,评估机会点与威胁。
3、根据过往业绩走势,发现自然变化规律,制定更合理的目标。
决策中:1、量化评估备选方案所需的时间、人力、物力投入。2、根据过往表现,量化评估方案可行性,评估预计完成率。3、根据过往业绩走势,发现自然变化规律,制定更合理的目标。
到了这个阶段,已经实现了数据驱动决策和数据化管理。这个阶段最经典的就是PDCA理论。它将决策过程分为PDCA四个阶段:
●
Plan计划● Do执行● Check检查● Act处理通过循环迭代,确保目标落地,逐步提升质量(如下图)
听起来似乎到这里,数据驱动决策已经做到头了。在原理上确实如此,很多经典的管理理论都是建立在这个阶段。后续的主要进化,体现在技术方面。因为获取数据,本身是一件非常艰难,且非常需要技术支撑的工作。因此技术手段的高低,直接决定了管理理论能否落地,能否创新。 相当多的经典管理模型,比如AIDMA、PSM、双盲测试(ABtest)都是建立在调研问卷的基础上的。虽然理论上调研问卷能问回来一切数据,但是调研有天生的局限:
1、人记忆力有限,数据准确度不高2、人精力有限,问题不能太多,选项不能太复杂3、人有惰性,A选项永远选的最多,3分、5分的比例永远最高
受以上限制,好问卷成本高,周期长,获取数据速度贼慢贼慢。因此,后续的管理方法进步更多是伴随着数据采集方法的进步,越做越精细。
4 更精细的数据驱动流程
更精细的数据驱动手段,都是技术驱动的:
1、有了OMS/CRM系统,可以更即使采集交易+用户数据2、有了APP/小程序+数据埋点,可以采集用户行为数据3、有了丰富的数据,可以完善用户画像,可以做预测模型4、通过CDP/ECRM等工具,可以直接把数据推给业务执行 有了技术支持,在管理上细节也更丰富(如下图)
交于上个阶段,主要增加的内容包括:
1、从整体目标分解到各部门、各环节子目标,逐级落实2、更清晰地区分指标与判断标准,引入综合评估方法3、增加了CDP(选老办法),与ABtest(测新办法),更容易选出好办法 整体过程,可以看下图的详细描述:
这阶段最流行的就是OSM方法,通过逐级分解/量化指标,推动决策落地(如下图)
注意:想实现驱动效果,需要的是在决策过程每个环节,配置合适的数据工具,分别发挥作用。是一套工具的组合,而非一个超厉害的模型或者公式,计算出超厉害结果。在整个工作过程中,技术上最大难点在于数据采集,要保障高质量、多维度的数据收集且不拖项目整体进度,是个非常麻烦的事。业务上的最大难点,在于共识。如何避免争吵,争取认可是关键(如下图)
到这里就介绍完了。但是肯定有同学好奇:这管理理论看起来也不复杂呀,为啥我在现实中就看不到呢?那是因为理论和现实总有差距,具体到企业里,各种奇葩人和事层出不穷。
5 为什么你感受不到数据驱动决策
▌ 问题1:人/制度/系统落后。● 相当多的企业不重视数据建设,特别是数据采集与流程规范。● 相当多的企业制度还停留在原始阶段,大干快上。● 相当多的企业领导还在用野蛮管理方法。时代变了,人/制度/系统不变,一切还是不会变。 ▌ 问题2:私心太重,刻意扭曲数据。 很多领导也就是嘴上喊喊数字驱动,实际上只是拿数据当牌坊,好看的数字多写,不好看的数字变着法改好看,实在不行就甩锅给“我司没有人工智能大数据分析能力”,这样铁定实现不了数据驱动,而是在玩数字游戏。
▌ 问题3:盲目迷信人工智能大数据。 注意:从数据驱动的演化过程可以看出,想实现数据驱动,需要的是前中后期的分工,是报表、管理模型、算法模型、测试平台、专题分析的相互配合,不是一个“超牛逼智能模型”Duang!一声就模出来的。然而总有人不信,总有人以为电脑里住着一个无所不知的“模型”能一模定乾坤,最后自然各种悲剧收场。
▌ 问题4:过于重视指标,忽视标准建设。 这是数据分析师们常犯的问题。一讲分析,张嘴就是几十个数据指标,可到底哪个是主指标,哪个是副指标,哪个是参考指标。到底哪几个指标组合起来看,到底指标数值是多少算好,多少算差。没有清晰的标准,没有和业务共识。最后只知道罗列数据,无法下判断结论。 ▌ 问题5:与业务脱节,对业务流程缺少数据积累。 这是数据分析师们常犯的问题。每天就知道盯着GMV,流量,DAU,MAU,转化率几个指标,对业务流程一窍不通,对不同业务手段的效果没有观察积累,最后除了翻来覆去啰嗦几个指标,就只会说:要搞高,要保持,全是废话,更无法驱动决策。
6 小结
数据驱动决策,需要的是业务流程与数据紧密配合,领导层参与推动,才能实现的事。数据驱动决策,从来都不是一个神机妙算的世外高人,拿着数据口念咒语:“妈咪妈咪轰”就轰出来一个惊天地泣鬼神的结论,这是基本常识。
落后的人、落后的系统、落后的流程,都会让数据浮于表面。因此即使短时间内看不到成果也不要失去信心,这些落后的人和事,最后都会被淘汰在历史里。作为从业者,我们要多锻炼的是自己的能力,才有机会加入更好的平台,做出更好的项目,与大家共勉。
扫码添加老师微信,一起做数据分析达人!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28