
如何从海量数据中挖掘威胁情报_数据分析师
正如有些有见地的员工所指出,“威胁情报”是还没有明确定义的令人困惑的概念。如果你到处问问“什么是威胁情报?”,你会得到各种对解决方案和服务的描述,从恶意软件数据库到签名检测工具和IDS/IPS系统,再到现场咨询服务等。
然而,在乍看之下,这两个词一起看似乎立刻有了意义。“情报”即收集关于某物的详细信息,而“威胁”就是你收集关于什么的信息。当你在谷歌搜索“情报搜集”,定义很明确:
在最广泛的形式中,情报收集网络是指这样一个系统,即通过这个系统收集的关于特定实体的信息通过使用一个以上相互关联的来源而让另一个人受益。
从网络的角度来看,对可能威胁你的业务、网络、软件、web服务器等的信息的收集是很有价值的。那么,为什么网络威胁情报这么难以获取?对于初学者来说,是不是几乎所有安全工具或网络防御活动都是威胁情报机制?同时,如果是这样的话,企业如何利用来自四面八方的数据来采取任何形式的行动?答案是“是”以及“不是那么容易”。事实上,现在大多数企业很难从威胁情报中获取真正的价值。
网络安全领域的大多数解决方案会测量、追踪、日志记录或报告事件。所有这些工具和流程会产生数据,这些数据可以进行数据分析而产生“威胁情报”。这些工具会产生大量数据,而且是很低水平的数据,换句话说,关于任何实体的信息都是非常冗长、复杂,且很少相互关联。
更重要的是,很少有企业部署了强大的描述性-预测性-指令性分析功能来整理这些数据,以及支持最高业务层面的决策过程。这些威胁数据并没有标准模式或者联系网络活动到资产或业务操作。因此,并没有决策支持系统可以支持数据挖掘活动来回答典型的描述性问题,例如“在过去六个月是什么对企业造成最大的伤害?”或者更成熟的问题,“我们的哪个技术投资具有最高的投资回报率,以及哪些技术投资带来负面影响,哪些可能会构成威胁?”
企业如何清除这些噪音而获取真正的价值呢?通过遵循一个简单的公式即可。还记得我们在学校学过的勾股定理吗?a2 + b2 = c2?这是几何的基本定理。还有麦克斯韦方程?热力学第二定律?傅立叶变换?或者其中最有名的,爱因斯坦的相对论,E=mc2?这些公司帮助我们制造了太多信息,太多数据。这些公式同样带领我们到了现在的时代,雷达、电视、喷气式客机、电子邮件、互联网以及社交媒体。
输入一个简单的公式可以帮助获取有效的网络威胁情报而不只是收集威胁数据:
Risk Intelligence = (High-Level Threat Intelligence + Context) * Continuous Data Collection/Intuitive KPIs
威胁情报=(高级别威胁情报+背景知识内容)*连续数据采集/直观的KPI
诚然,这并不是“真正的”公式。但它确实提供了同样强大的功能。换句话说,它可以帮助企业消除数据噪音,让看似无关的数据带来真正价值,带来切实可行的解决方案。
在上面的公式中,我们可以将通过从各种来源收集和转译的低水平的威胁数据,转变为到分析师可以理解的高水平语言。通过存储这些数据并赋予其与你的企业、行业、技术相关的特定背景知识,以及威胁会如何影响你的企业,数据就可以进行分析。
从这个公式来看,简单的分析通常就能够产生需要的结果。使用传统的关键绩效指标(KPI)业务智能结构,企业可以使用这个公式创建简单而强大的分析。例如,在金融领域,典型的KPI包括利用率、利润对收益率、现金流、净乘法器和积压量。当随着时间的推移,这个过程会为业务领导产生重要的决策信息。
这种kPI的概念还可以用于网络数据。最后,它们也可以产生重要的价值信息,例如,特定安全投资的投资回报率或者企业是否有足够的安全人员来实现特定的安全目标。应用简单的威胁情报公式来处理原始威胁情报可以产生有用和有价值的结果。CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01