
> options(digits = 4) #输出结果位数
> par(mar=c(4, 4, 2, 1) + 0.1, cex=0.8) # 图形修饰
> case1 <- read.csv("clipboard", header=T, sep = "\t") #复制表中的数据,直接创建case1
> head(case1)
地区 性别 教育程度 观点 年龄 月收入 月支出
1 A 女 中 不支持 55 2299 1423
2 A 女 低 不支持 39 3378 2022
3 A 女 中 支持 33 3460 1868
4 B 男 高 支持 41 4564 1918
5 B 女 高 不支持 55 3206 1906
6 A 女 中 不支持 48 4043 2233
> summary(case1)
地区 性别 教育程度 观点 年龄 月收入 月支出
A:204 男:603 低:319 不支持:628 Min. : 6.0 Min. : 637 Min. : 797
B:401 女:597 高:303 支持 :568 1st Qu.:34.0 1st Qu.:2388 1st Qu.:1722
C:384 中:578 NA's : 4 Median :40.0 Median :2978 Median :1993
D:211 Mean :40.1 Mean :3006 Mean :1997
3rd Qu.:47.0 3rd Qu.:3624 3rd Qu.:2262
Max. :72.0 Max. :6239 Max. :3385
# 定性分析
> attach(case1) #绑定数据
> T1 <- table(地区)> T1
地区
A B C D
204 401 384 211
> barplot(T1) #绘制条形图
# 定量分析 > f <- hist(月收入) #直方图
# 定性定量分析 > boxplot(月收入~性别) #箱线图
> t.test(月收入~性别) #t检验
Welch Two Sample t-test
data: 月收入 by 性别
t = 0.51, df = 1200, p-value = 0.6
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-75.43 128.49
sample estimates:
mean in group 男 mean in group 女
3019 2993
# 接受男女的月收入无显著差异的假设(p>0.5)
# 二维列联表分析
> T2 <- table(性别, 观点)
> T2
观点
性别 不支持 支持
男 319 282
女 309 286
> barplot(T2, beside = TRUE) # 条形图
> barplot(T2, beside = F) # 条形图
# beside=T表示绘制分组条形图,beside=F表示绘制堆叠条形图
# 多维列联表分析
> T3 <- ftable(性别, 教育程度, 观点) # 创建一个紧凑的"平铺"式列联表
> T3
观点 不支持 支持
性别 教育程度
男 低 81 88
高 78 66
中 160 128
女 低 82 68
高 86 72
中 141 146
> barplot(T3, beside = TRUE, col = 3:4) #条形图
> T4 <- ftable(教育程度, 性别, 观点)
> T4
观点 不支持 支持
教育程度 性别
低 男 81 88
女 82 68
高 男 78 66
女 86 72
中 男 160 128
女 141 146
> barplot(T4, beside = TRUE, col = 3:4) #条形图
> detach(case1) #解除绑定
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27