
> options(digits = 4) #输出结果位数
> par(mar=c(4, 4, 2, 1) + 0.1, cex=0.8) # 图形修饰
> case1 <- read.csv("clipboard", header=T, sep = "\t") #复制表中的数据,直接创建case1
> head(case1)
地区 性别 教育程度 观点 年龄 月收入 月支出
1 A 女 中 不支持 55 2299 1423
2 A 女 低 不支持 39 3378 2022
3 A 女 中 支持 33 3460 1868
4 B 男 高 支持 41 4564 1918
5 B 女 高 不支持 55 3206 1906
6 A 女 中 不支持 48 4043 2233
> summary(case1)
地区 性别 教育程度 观点 年龄 月收入 月支出
A:204 男:603 低:319 不支持:628 Min. : 6.0 Min. : 637 Min. : 797
B:401 女:597 高:303 支持 :568 1st Qu.:34.0 1st Qu.:2388 1st Qu.:1722
C:384 中:578 NA's : 4 Median :40.0 Median :2978 Median :1993
D:211 Mean :40.1 Mean :3006 Mean :1997
3rd Qu.:47.0 3rd Qu.:3624 3rd Qu.:2262
Max. :72.0 Max. :6239 Max. :3385
# 定性分析
> attach(case1) #绑定数据
> T1 <- table(地区)> T1
地区
A B C D
204 401 384 211
> barplot(T1) #绘制条形图
# 定量分析 > f <- hist(月收入) #直方图
# 定性定量分析 > boxplot(月收入~性别) #箱线图
> t.test(月收入~性别) #t检验
Welch Two Sample t-test
data: 月收入 by 性别
t = 0.51, df = 1200, p-value = 0.6
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-75.43 128.49
sample estimates:
mean in group 男 mean in group 女
3019 2993
# 接受男女的月收入无显著差异的假设(p>0.5)
# 二维列联表分析
> T2 <- table(性别, 观点)
> T2
观点
性别 不支持 支持
男 319 282
女 309 286
> barplot(T2, beside = TRUE) # 条形图
> barplot(T2, beside = F) # 条形图
# beside=T表示绘制分组条形图,beside=F表示绘制堆叠条形图
# 多维列联表分析
> T3 <- ftable(性别, 教育程度, 观点) # 创建一个紧凑的"平铺"式列联表
> T3
观点 不支持 支持
性别 教育程度
男 低 81 88
高 78 66
中 160 128
女 低 82 68
高 86 72
中 141 146
> barplot(T3, beside = TRUE, col = 3:4) #条形图
> T4 <- ftable(教育程度, 性别, 观点)
> T4
观点 不支持 支持
教育程度 性别
低 男 81 88
女 82 68
高 男 78 66
女 86 72
中 男 160 128
女 141 146
> barplot(T4, beside = TRUE, col = 3:4) #条形图
> detach(case1) #解除绑定
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25