京公网安备 11010802034615号
经营许可证编号:京B2-20210330
▌ 问1:做数据分析有前途吗?
答1:有!
▌ 问2:那为啥我感觉不到?!
答2:因为“数据分析”四个字下边,挂羊头卖狗肉的多。最经典的,就是每天导出excel表,然后做个“同比、环比”ppt的数据分析专员。名为数据分析,实则就是普通文员。
▌ 问3:对对对!我就是这种excel专员,我还有前途吗?
答3:当然有。前途就是努力学习sql取数、python、PowerBI等工具,然后熟悉下自己整理的excel字段的业务含义(一般都是销售日报、客服日报之类)。跳一下槽就好了。
▌ 问4:那么,什么样的公司有前途一点?
答4:以下3个条件,满足一个的都能考虑,满足2个更好,3个就最好了1、公司业绩处于上升期,不断扩编2、有独立的数据部门/数据小组3、有专业数仓,能自己写sql提数
因为只有小公司才瞎胡咧咧,问什么“数据分析有没有用”。在大公司,数据就是工作的水和空气,是基本条件。数据部门是基础服务部门,只要公司持续发展,就会持续招人。进一个有数据团队的公司,能保证自己稳定积累2~3年能力,以后再去一线大厂或者去其他公司自己组建团队,都有底子了。后边的路就顺了。
▌ 问5:好像要求有点高!如果条件1不满足,下降期公司能去吗?!
答5:如果是“瘦死的骆驼比马大”型下降,是可以考虑的。
比如这两年很多传统企业都发展受阻,业绩下滑。但是这些传统企业依然在努力做线上渠道,在扩充数据团队,这种情况是可以去的。一来,可以学习一些基础知识,比如传统企业的渠道管理、商品管理,比所谓“新零售互联网”要成熟很多。二来,有机会锻炼一下能力。又不是干一辈子,积累一些经验就可以再考虑换了。至于有些公司,本身就不咋地,再发展不行,就别去填坑了……
▌ 问6:如果条件2不满足,可以考虑吗,比如挂在业务部门的数据分析师?
答6:去了肯定过得没那么舒服,但不代表要拒绝。
一个典型的不好拒绝的,就是某些大厂,会把数据分析挂在算法/产品部门下边。给算法开发打下手。很多人一看“大厂”+“算法”,立马心潮澎湃就过去了。结果去了发现:策略产品经理提需求,算法负责实现,数据分析就是每天无休无止的写sql拉各种数,做个ABtest要分500多个维度拆解差异。虽然钱还是有,但是加班强度和郁闷程度都是很高的。如果是一个小厂子,待遇一般,去了搞什么客服排班、新媒体数据分析之类不入主流的工作,那就直接拒掉吧,没啥损失,去了又学不到东西又没钱。
▌ 问7:如果条件3不满足,可以考虑吗,特别是有些新团队。
答7:只要岗位在IT部门,且IT部门不是散装团队,有一定规模(20+人头),都可以考虑。毕竟事情都有个从0到1的过程的。岗位在IT团队能确保自己不落单。最怕的是IT团队是草台班子,或者这个岗位压根就是业务部门招的,又没有专门的数仓,让你自己从各种平台捞数……估计每天烦都能烦死。
更糟糕的是,骑自行车的本事,开汽车时用不上。很多散装小团队以“能学东西”为名义忽悠人,可真到面试大公司的时候才发现根本没用,专业度才是第一位的。
▌ 问8:上边没看到讲传统企业与互联网企业的区别呀?关系大吗?
答8:其实传统企业,只要不是那种领域很窄的,比如装备制造业、化工等等,都可以考虑。
一来,在商品管理、店铺管理、外呼管理、地推团队管理上,一个历史悠久的传统企业积累的经验,远远不是这两年的新冒出来的“新零售”互联网公司能比的。可以积累一定经验。二来,互联网与传统的差异,在数据上主要体现在埋点+用户行为分析上。如果传统企业也有自建的电商渠道,也有做埋点,其实差异就没那么大了。特别是,这两年互联网在退潮,大厂裁员,小厂关门情况很多,不见得对所有人都是好赛道。所以还是看具体岗位+薪资,只要岗位薪资过得去,还是可以考虑的。
▌ 问9:那做数据分析的终点是啥?
答9:能在大厂混一个数据部门组长/总监就差不多了。
注意!数据分析岗不太适合创业。传统公司创业的都是销售,手里有客户;互联网公司创业的很多是知名的产品,因为和投资人熟,对整个开发过程熟悉。数据工作本质是个手艺活。
▌ 问10:那我不想干数据了,还能干啥?
答10:如果不想废弃数据技能,业务上和数据比较近的,都是策略类工作,比如用户运营、商品管理、策略产品,这些可以在补充专业知识后转过去。技术上直接干大数据开发就好了。
▌ 最后一问:为啥上边没给标准,比如从业1年年薪百万,从业5年创业30岁身价过亿?
答:这些本身就是忽悠人的玩意,想看薪资标准自己去BOSS直聘/拉勾网搜哈。
要特别强调的是:冷暖自知。生活不是考试,没有标准答案,薪酬也不是考试成绩,没必要相互攀比。就像很多人看不上外包工作,可如果你看到一个之前月薪5K的表哥,努力成为一名1.5w月薪的sql boy之后有多喜悦,你也会有另一番评价。有些人自己学历高、经验多,就“为何不食肉糜”的抨击别人不努力,不去卷大厂,这是非常错误的。不同人起点不同,能努力找到适合自己的方向才是最重要的。
文章来源于接地气的陈老师 ,作者接地气的陈老师
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29