京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言和Python—一个错误的分裂
最近有一些文章提出与年龄相关的问题:“崭露头角的年轻数据科学家们是学习R语言还是Python更好?”
答案似乎都是“视情况而定”,在现实中没有必要在R和Python中做出选择,因为你两个都用得到。
什么是”数据科学”?
在谈论RPy2之前,先来说一下“数据科学”,我要说的是“数据科学”是一个奇怪的词。因为几乎所有的科学都是“数据科学”。“无数据科学”则是完全不同的领域:哲学。“数据科学”是一门通过系统观察,对照实验,贝叶斯推理的开放试验理念的科学学科。
“数据科学”的目标是从数据中得出有效的统计推论。标签“数据”是指数据用于做什么并不重要,但这是错误的:它是难以且不可能做到科学的在没有得到数据的详细信息,得去了解系统的弱点并生产出来,智能、灵敏的应对非理想好数据。
任何有趣的数据集至少有以下一些特性:缺失值,异常值和噪声。缺失值:顾名思义就是缺失的值。异常值:离群怪异的事件,由于某种原因或其他的事件其值远远的超出合理界限。噪声的是,从所测量的值的随机(或非随机的)影响的着结果的分布。一个良好的测量分布,异常值和噪声在噪声不同下一般有较容易理解的因素,而异常值通常是很少发生的,我们不能通过分布很好的理解。
对于处理这类事情R,Python和RPY的都是有用的工具。
为什么R非常适合数据科学
R语言对有经验的统计分析师来说是非常轻量级. 它由科学家创造,对绝大多数的数据管理任务来说都非常轻松。特别适合以下几种数据管理任务:
标记数据
填充遗漏值(译者注:比如10行数据每行固定9列,但是第三行却只有5列数据,可以通过R的函数自动补全另外的5列值)
过滤
R语言对标记数据的支持非常友好. R语言的“data frame”概念,使得通过对数据列和数据行头来分割组合数据、标记数据,然后以纯数值的矩阵数据交给算法处理. 而传统的数据科学开发语言,如Python对数据的处理都需要开发者自己完成,需要消耗开发者大量时间且容易出错.
处理或丢弃遗漏值、离群值(译者注:极值,如最大值、最小值)在数据中是非常基本但重要的任务. 某些情况下,本来是有利的数据,却因为测量误差等原因变成了不利、反对的数据。(译者注:比如越趋近于1才表示越可能是.)你如何处理这些事情可以对你的分析结果产生很大的影响。
R语言提供了丰富的算法来处理长期以来科学实践中出现的各种数据有关问题,虽然这些算法仍然需要自己去尝试和判断选择,以选择最恰当的数据处理算法.
RPy2: 架起R语言与Python之间的桥梁
Pandas,Python的数据分析库,目前它已经有很多相同功能,但是RPy2创造了一条很好的从R语言到Python的迁移路线,它让你在学习Python的时候,把R语言作为一个附属部分来学习,对于很多有丰富实验开发经验的分析师会使用R语言,当他们想把算法融入一个Python应用程序,并分发给用户时,他们也可以使用RPy2。
执行这种迁移的能力,而不离开R语言的概念模型是很有价值的,但从另一个角度来说,这也是一个限制,能够使用一个真正的通用编程语言,如:Python,来包装概念模型,并使得这个用户友好的应用程序有多种复杂的附加功能(打印,网络,USB支持,等等)是至关重要的。
举例来说,我已经使用了这种方法来创建读取传感器数据的Python应用,通过RPy2处理,以各种方式显示给客户,我不知道怎么用R语言读取传感器数据,应该是有某种方法的。而Python已经做好了我需要的模块,即使没有也非常容易扩展。
如果你还不知道R语言,我推荐你学习Python并且使用RPy2来访问R语言的函数。你学习一种语言获得了两种能力。一旦你学习过RPy,再转到纯R语言也不是什么大问题,但是,你想要反过来就没那么容易了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27