
R语言和Python—一个错误的分裂
最近有一些文章提出与年龄相关的问题:“崭露头角的年轻数据科学家们是学习R语言还是Python更好?”
答案似乎都是“视情况而定”,在现实中没有必要在R和Python中做出选择,因为你两个都用得到。
什么是”数据科学”?
在谈论RPy2之前,先来说一下“数据科学”,我要说的是“数据科学”是一个奇怪的词。因为几乎所有的科学都是“数据科学”。“无数据科学”则是完全不同的领域:哲学。“数据科学”是一门通过系统观察,对照实验,贝叶斯推理的开放试验理念的科学学科。
“数据科学”的目标是从数据中得出有效的统计推论。标签“数据”是指数据用于做什么并不重要,但这是错误的:它是难以且不可能做到科学的在没有得到数据的详细信息,得去了解系统的弱点并生产出来,智能、灵敏的应对非理想好数据。
任何有趣的数据集至少有以下一些特性:缺失值,异常值和噪声。缺失值:顾名思义就是缺失的值。异常值:离群怪异的事件,由于某种原因或其他的事件其值远远的超出合理界限。噪声的是,从所测量的值的随机(或非随机的)影响的着结果的分布。一个良好的测量分布,异常值和噪声在噪声不同下一般有较容易理解的因素,而异常值通常是很少发生的,我们不能通过分布很好的理解。
对于处理这类事情R,Python和RPY的都是有用的工具。
为什么R非常适合数据科学
R语言对有经验的统计分析师来说是非常轻量级. 它由科学家创造,对绝大多数的数据管理任务来说都非常轻松。特别适合以下几种数据管理任务:
标记数据
填充遗漏值(译者注:比如10行数据每行固定9列,但是第三行却只有5列数据,可以通过R的函数自动补全另外的5列值)
过滤
R语言对标记数据的支持非常友好. R语言的“data frame”概念,使得通过对数据列和数据行头来分割组合数据、标记数据,然后以纯数值的矩阵数据交给算法处理. 而传统的数据科学开发语言,如Python对数据的处理都需要开发者自己完成,需要消耗开发者大量时间且容易出错.
处理或丢弃遗漏值、离群值(译者注:极值,如最大值、最小值)在数据中是非常基本但重要的任务. 某些情况下,本来是有利的数据,却因为测量误差等原因变成了不利、反对的数据。(译者注:比如越趋近于1才表示越可能是.)你如何处理这些事情可以对你的分析结果产生很大的影响。
R语言提供了丰富的算法来处理长期以来科学实践中出现的各种数据有关问题,虽然这些算法仍然需要自己去尝试和判断选择,以选择最恰当的数据处理算法.
RPy2: 架起R语言与Python之间的桥梁
Pandas,Python的数据分析库,目前它已经有很多相同功能,但是RPy2创造了一条很好的从R语言到Python的迁移路线,它让你在学习Python的时候,把R语言作为一个附属部分来学习,对于很多有丰富实验开发经验的分析师会使用R语言,当他们想把算法融入一个Python应用程序,并分发给用户时,他们也可以使用RPy2。
执行这种迁移的能力,而不离开R语言的概念模型是很有价值的,但从另一个角度来说,这也是一个限制,能够使用一个真正的通用编程语言,如:Python,来包装概念模型,并使得这个用户友好的应用程序有多种复杂的附加功能(打印,网络,USB支持,等等)是至关重要的。
举例来说,我已经使用了这种方法来创建读取传感器数据的Python应用,通过RPy2处理,以各种方式显示给客户,我不知道怎么用R语言读取传感器数据,应该是有某种方法的。而Python已经做好了我需要的模块,即使没有也非常容易扩展。
如果你还不知道R语言,我推荐你学习Python并且使用RPy2来访问R语言的函数。你学习一种语言获得了两种能力。一旦你学习过RPy,再转到纯R语言也不是什么大问题,但是,你想要反过来就没那么容易了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29CDA 数据分析师必备技能全解析 在数据驱动决策的时代,CDA 数据分析师作为连接数据与业务价值的桥梁,需要具备多元化的技能体系 ...
2025-07-29解析 LSTM 训练后输出不确定:成因与破解之道 在深度学习处理序列数据的领域,长短期记忆网络(LSTM)凭借其捕捉长距离依赖关系 ...
2025-07-29χ² 检验与 t 检验:数据差异分析的两大核心工具 在统计学的方法论体系中,假设检验是验证数据规律、判断差异显著性的核心手段 ...
2025-07-29