
迎接法律行业的大数据时代(新知新觉)
以大数据、云计算、物联网等为代表的信息技术正深刻改变着我们认识世界、改造世界的方法。面对大数据,如果思想观念还停留在过去,就会落后于时代。在信息时代,我们应充分认识大数据对法律行业的意义,积极利用大数据带来的新思维、新方法推动法律行业发展。
提到法律领域的大数据,我们首先容易想到的是网上公开的由大量裁判文书构成的案例大数据。通过对裁判文书的分析,挖掘其中的数据段和规则,智能机器也能够读懂文书。如果机器能够理解我们的规则,它就能根据自身所理解的规则推导出新的规则,或者至少依据规则对新出现的事物作出判断。
目前的人工智能技术是海量大数据、自然语言分析能力、机器学习技术和强大的计算能力相结合的产物。包括案例大数据在内的法律大数据,可以从以下几个方面对法律行业产生积极作用。一是提升法律工作者的工作质量和效率。比如,快速寻找相似案件的法律文书。目前开展这项工作还需要人主动搜索案件,但数据技术系统可以通过对裁判文书关键词的精准匹配,判断裁判文书的相似程度,自动向用户推送类似的裁判文书。二是健全法律行业的评价体系。比如,从公开的裁判文书大数据中,可挖掘出律师的执业信息,为每一位律师“画像”。除此之外,法律行业的网络信息中已经沉淀了一部分律师执业状况的数据,将这些数据综合起来,就可以形成一个多维的律师评价体系。三是理顺法律职业共同体的关系。法律职业共同体的工作平台被互联网连接起来以后,它们之间的协作配合将更为高效;每一位法律工作者的工作进度都将得到更透明的展现,相关监督也将更为有效。
未来的法律职业共同体是一个线上线下融合的共同体。法律大数据是这个职业共同体的共同财富,也是它的坚实基础。但也应看到,要形成这样的法律大数据,当前还存在一些困难。第一,数据采集方式有待提高。传统的数据采集以统计为导向,多靠人工录入。这样的方式既增加了工作量,又由于主观性强而存在数据不够客观的问题。真正的大数据应来源于法律工作者在线行为的自然沉淀。事实上,移动互联网的发展让人们越来越多的行为在线上完成,而互联网技术的这一特点本身就会让数据沉淀下来。第二,数据的完整程度不够高,数据公开还不够全面。虽然近年来各级法院依托信息化和司法公开向社会公开了很多裁判文书,但它们实际上只是审判结果数据的在线化。审判过程等方面的数据开放程度还不够,法律大数据无法形成封闭环。第三,数据不开放、不贯通。法律行业的各类数据尚未贯通,还停留在一个个“数据孤岛”的状态,制约了人们对法律大数据的利用。为推动形成更加高效的法律职业共同体,应进一步推动法律大数据发展。
推进法律行业信息化。一定意义上说,法律人行为的在线程度决定了法律大数据的发展程度。因此,法律人养成在线工作习惯至关重要。当前,数据的生成、采集过程和法律工作过程结合还不够紧密,数据往往要通过人工再录入一遍。这样一来,法律人的工作量非但没有减轻,反而大大增加,这使得他们中一些人抵触大数据。只有让法律人真正感受到在线工作的便利,乐于在线工作,体会到数据采集和分析带来的实际好处,才能让他们对大数据从“要我用”转变为“我要用”。
增强法律数据开放度。打破数据壁垒,将数据视为国家基础性战略资源,加强对数据的开发共享。法律大数据是由法律职业共同体的在线行为共同沉淀的,是属于整个法律职业共同体的资源。任何一个法律职业都会涉及其他法律职业,需要共享彼此掌握的数据。只有打破各个法律职业间的数据壁垒,才能为所有法律人的在线工作提供更多数据支持,也才能进一步推动法律大数据沉淀。
充分利用法律大数据。虽然我们一直强调大数据的价值,但数据本身其实并不会产生价值。只有通过对数据进行计算,从数据中挖掘出规律,了解、分析甚至预测法律人的行为,法律大数据才能真正发挥积极作用。但是,计算能力毕竟是稀缺资源,仅由某家律师事务所、某个法律部门来进行计算,难以充分发挥法律大数据的价值。应允许更为多元的创新力量利用法律大数据,推动法律大数据的价值得到更大程度的发掘。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09