
R语言基本操作
R语言和Python类似,也是有许许多多的包(Python中是模块)组成,具体用什么就安装什么,用的时候再去加载。
1、安装包:
语法:install.packages("包名")(两个引号""不能省略)
如:下面就是安装强大的绘图包 ggplot2
>install.packages("ggplot2")
2、加载包
语法:library("包名")
>library("ggplot2")
3、查看数据类型
语法:class(变量)(数据框(data.frame)是R语言特有的数据格式)
> class(iris)
[1] "data.frame"
4、取数据框中的行和列
语法:<数据框>[行,列](如果取从..行(列)到...行(列),中间用:划分)
还是以iris的数据集为例子。
取第十行:
>iris[10,]
取第一行到第100行
>iris[1:100,]
取第三列:
>iris[,3]
取第一列到第三列:
>iris[,1:3]
如果要连续取多行(列)的话用c来取
iris[c(1:35,50:85,100:135),]
取列:
iris[,c(1:2,4:5)]
5、数据框拼接
按行拼接:
rbind
用法:rbind(data.frame1,data.datafram2,........)
> train_data1=iris[1:5,]
> train_data2=iris[7:8,]
> rbind(train_data1,train_data2)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
7 4.6 3.4 1.4 0.3 setosa
8 5.0 3.4 1.5 0.2 setosa
按列拼接:
cbind
用法:cbind(data.frame1,data.datafram2,........)
> iris[3:4,]
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
> iris[100:101,]
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
100 5.7 2.8 4.1 1.3 versicolor
101 6.3 3.3 6.0 2.5 virginica
> train_data1=iris[3:4,1:2]
> train_data2=iris[100:101,4:5]
> cbind(train_data1,train_data2)
Sepal.Length Sepal.Width Petal.Width Species
3 4.7 3.2 1.3 versicolor
4 4.6 3.1 2.5 virginica
#加载支持向量机的包
library("e1071")
library(kernlab)
#加载随机森林包
library("randomForest")
#加载iris的数据集
data_iris=iris
#得到训练数据集
train_data=data_iris[c(1:35,50:85,100:135),]
#得到测试数据集
test_data=data_iris[c(35:50,85:100,135:150),]
#随机森林测试
rFM=randomForest(Species~.,data=train_data,importance=TRUE)
rfm_result=predict(rFM,test_data[,c(1:4)])
#支持向量机测试
svmmodel=svm(Species ~ ., data =train_data)
svm_result=predict(svmmodel,test_data[,c(1:4)])
#随机森林比较
a=0
b=1
while(b<=48){
if(rfm_result[b]==test_data[,5][b]){
a=a+1
}else{
a=a
}
b=b+1
}
#随机森林正确率
a/48
#支持向量机比较
j=0
i=1
while(i<=48){
if(svm_result[i]==test_data[,5][i]){
j=j+1
}else{
j=j
}
i=i+1
}
#支持向量机正确率
j/48
出现这个结果应该是数据集太少了吧。目前的目的只是为了完成论文。。。。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29CDA 数据分析师必备技能全解析 在数据驱动决策的时代,CDA 数据分析师作为连接数据与业务价值的桥梁,需要具备多元化的技能体系 ...
2025-07-29解析 LSTM 训练后输出不确定:成因与破解之道 在深度学习处理序列数据的领域,长短期记忆网络(LSTM)凭借其捕捉长距离依赖关系 ...
2025-07-29χ² 检验与 t 检验:数据差异分析的两大核心工具 在统计学的方法论体系中,假设检验是验证数据规律、判断差异显著性的核心手段 ...
2025-07-29