京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言基本操作
R语言和Python类似,也是有许许多多的包(Python中是模块)组成,具体用什么就安装什么,用的时候再去加载。
1、安装包:
语法:install.packages("包名")(两个引号""不能省略)
如:下面就是安装强大的绘图包 ggplot2
>install.packages("ggplot2")
2、加载包
语法:library("包名")
>library("ggplot2")
3、查看数据类型
语法:class(变量)(数据框(data.frame)是R语言特有的数据格式)
> class(iris)
[1] "data.frame"
4、取数据框中的行和列
语法:<数据框>[行,列](如果取从..行(列)到...行(列),中间用:划分)
还是以iris的数据集为例子。
取第十行:
>iris[10,]
取第一行到第100行
>iris[1:100,]
取第三列:
>iris[,3]
取第一列到第三列:
>iris[,1:3]
如果要连续取多行(列)的话用c来取
iris[c(1:35,50:85,100:135),]
取列:
iris[,c(1:2,4:5)]
5、数据框拼接
按行拼接:
rbind
用法:rbind(data.frame1,data.datafram2,........)
> train_data1=iris[1:5,]
> train_data2=iris[7:8,]
> rbind(train_data1,train_data2)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
7 4.6 3.4 1.4 0.3 setosa
8 5.0 3.4 1.5 0.2 setosa
按列拼接:
cbind
用法:cbind(data.frame1,data.datafram2,........)
> iris[3:4,]
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
> iris[100:101,]
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
100 5.7 2.8 4.1 1.3 versicolor
101 6.3 3.3 6.0 2.5 virginica
> train_data1=iris[3:4,1:2]
> train_data2=iris[100:101,4:5]
> cbind(train_data1,train_data2)
Sepal.Length Sepal.Width Petal.Width Species
3 4.7 3.2 1.3 versicolor
4 4.6 3.1 2.5 virginica
#加载支持向量机的包
library("e1071")
library(kernlab)
#加载随机森林包
library("randomForest")
#加载iris的数据集
data_iris=iris
#得到训练数据集
train_data=data_iris[c(1:35,50:85,100:135),]
#得到测试数据集
test_data=data_iris[c(35:50,85:100,135:150),]
#随机森林测试
rFM=randomForest(Species~.,data=train_data,importance=TRUE)
rfm_result=predict(rFM,test_data[,c(1:4)])
#支持向量机测试
svmmodel=svm(Species ~ ., data =train_data)
svm_result=predict(svmmodel,test_data[,c(1:4)])
#随机森林比较
a=0
b=1
while(b<=48){
if(rfm_result[b]==test_data[,5][b]){
a=a+1
}else{
a=a
}
b=b+1
}
#随机森林正确率
a/48
#支持向量机比较
j=0
i=1
while(i<=48){
if(svm_result[i]==test_data[,5][i]){
j=j+1
}else{
j=j
}
i=i+1
}
#支持向量机正确率
j/48
出现这个结果应该是数据集太少了吧。目前的目的只是为了完成论文。。。。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27