京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言基本操作
R语言和Python类似,也是有许许多多的包(Python中是模块)组成,具体用什么就安装什么,用的时候再去加载。
1、安装包:
语法:install.packages("包名")(两个引号""不能省略)
如:下面就是安装强大的绘图包 ggplot2
>install.packages("ggplot2")
2、加载包
语法:library("包名")
>library("ggplot2")
3、查看数据类型
语法:class(变量)(数据框(data.frame)是R语言特有的数据格式)
> class(iris)
[1] "data.frame"
4、取数据框中的行和列
语法:<数据框>[行,列](如果取从..行(列)到...行(列),中间用:划分)
还是以iris的数据集为例子。
取第十行:
>iris[10,]
取第一行到第100行
>iris[1:100,]
取第三列:
>iris[,3]
取第一列到第三列:
>iris[,1:3]
如果要连续取多行(列)的话用c来取
iris[c(1:35,50:85,100:135),]
取列:
iris[,c(1:2,4:5)]
5、数据框拼接
按行拼接:
rbind
用法:rbind(data.frame1,data.datafram2,........)
> train_data1=iris[1:5,]
> train_data2=iris[7:8,]
> rbind(train_data1,train_data2)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
7 4.6 3.4 1.4 0.3 setosa
8 5.0 3.4 1.5 0.2 setosa
按列拼接:
cbind
用法:cbind(data.frame1,data.datafram2,........)
> iris[3:4,]
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
> iris[100:101,]
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
100 5.7 2.8 4.1 1.3 versicolor
101 6.3 3.3 6.0 2.5 virginica
> train_data1=iris[3:4,1:2]
> train_data2=iris[100:101,4:5]
> cbind(train_data1,train_data2)
Sepal.Length Sepal.Width Petal.Width Species
3 4.7 3.2 1.3 versicolor
4 4.6 3.1 2.5 virginica
#加载支持向量机的包
library("e1071")
library(kernlab)
#加载随机森林包
library("randomForest")
#加载iris的数据集
data_iris=iris
#得到训练数据集
train_data=data_iris[c(1:35,50:85,100:135),]
#得到测试数据集
test_data=data_iris[c(35:50,85:100,135:150),]
#随机森林测试
rFM=randomForest(Species~.,data=train_data,importance=TRUE)
rfm_result=predict(rFM,test_data[,c(1:4)])
#支持向量机测试
svmmodel=svm(Species ~ ., data =train_data)
svm_result=predict(svmmodel,test_data[,c(1:4)])
#随机森林比较
a=0
b=1
while(b<=48){
if(rfm_result[b]==test_data[,5][b]){
a=a+1
}else{
a=a
}
b=b+1
}
#随机森林正确率
a/48
#支持向量机比较
j=0
i=1
while(i<=48){
if(svm_result[i]==test_data[,5][i]){
j=j+1
}else{
j=j
}
i=i+1
}
#支持向量机正确率
j/48
出现这个结果应该是数据集太少了吧。目前的目的只是为了完成论文。。。。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13