京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据质量,现金流失或现金收益_数据分析师
解决数据质量问题,需要投资,而且是一个企业不可避免的。数据质量不佳会导致合规性问题、法律上的挑战以及来自各方面不断增加的工作量。随着时间的推移,随着数据(或从中获得的信息)衰减,低效率和不准确变成了可以在整个组织中阻碍进步的一个严重问题。如果客户觉得自己的数据没有被正确处理,他们将会有更高的期望并感觉更有权利去抱怨。36大数据网
根据2009年Gartner的研究,因为数据质量差,商家估计,他们平均每年失去820万美元。五年来,我们存储的,管理的和依靠的数据比以往任何时候都多。投资于有效的解决方案降低数据质量差的风险,比以往任何时候都显得重要。
成千上万的企业现在面对自己的责任,并投资于数据质量软件。它们也必须满足过时的数据和问题的再解决所产生的费用。通常情况下,企业根本不明白他们正在使用的数据,这意味着数据质量措施在实施时成本会失控。
36大数据网
面对这些昂贵的项目,很多企业推迟数据质量改进措施,担心他们是“只有痛苦,没有收获”。关于价格昂贵、难以管理的数据质量项目的恐怖故事可能从企业开始掌握问题时就阻碍了业务。商家没有意识到,有效的数据质量项目产生令人印象深刻的投资回报(ROI),并能大量提高工作效率和士气。这只是需要以正确的方式来衡量的。
数据质量项目将提升整个企业的效率和并切实节约成本。从销售部门到支持团队,整个生命周期变得更加简单和易于管理。该业务能够更好地报告其进展情况并且使用数据从过去塑造其到未来的发展方向。
36大数据网站
有这些理想的结果主要有两个原因:
把积极的结果变成文字很简单:我们经常在我们的博客中讲数据质量高的好处。根据数据或者节约的花费而表现出的积极成果可能不那么明显。除非你可以跟踪它,并提供确凿的证据,不然去证明积极的投资回报是不可能的,而且这是你能证明有价值的数据质量的唯一途径。
36大数据网站
即使员工觉得自己能更有效率的工作,并且客户觉得他们对你的品牌有更多的信心,但是依旧没有任何事实和数据能够支持他们。也就是说,除非你主动跟踪变化的影响。
要跟踪经济的影响,有几种有效的方法来衡量数据质量项目中的投资回报率。
必要的测量是收益与支出,如这些例子中展示的:
虽然这看似简单,但在实践中是很复杂的。当数据不兼容,或容易导出和处理时,旧的系统会引发挑战,。对于数据质量项目意味着什么以及他们被期望投资的多少,不同的部门有不同的看法。除非投资回报率得到证明,不然鼓励买进跨组织对于它也很困难,而且到那时,该项目可能会接近完成。
36大数据网站
无论如何,企业必须能够表明,数据质量项目取得了成功。这将确保企业可以提出理由保持数据清洁和无成本重复。
当一个企业关心数据质量项目的成本问题,选择需要最少的培训和实惠的前期投资工具是很有帮助的。如果数据被有效地处理,最好使用集成的工具,而不是一个会引入更多的数据质量的挑战导出/导入过程,这也是很有帮助的。
如果你不能相信你的企业依赖的数据,它将变得不那么有用,而且会会失去它的价值。曾经是一个重要的商业资产成为陈旧、笨拙的可能会或也可能不会支持你的目标的数据集合。
36大数据网站
关键是要载有可衡量的目标,并确保进度被有效跟踪。只有这样,企业才能知道它的数据是符合目标的,才可以定义数据质量项目的投资回报率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19