
数据质量,现金流失或现金收益_数据分析师
解决数据质量问题,需要投资,而且是一个企业不可避免的。数据质量不佳会导致合规性问题、法律上的挑战以及来自各方面不断增加的工作量。随着时间的推移,随着数据(或从中获得的信息)衰减,低效率和不准确变成了可以在整个组织中阻碍进步的一个严重问题。如果客户觉得自己的数据没有被正确处理,他们将会有更高的期望并感觉更有权利去抱怨。36大数据网
根据2009年Gartner的研究,因为数据质量差,商家估计,他们平均每年失去820万美元。五年来,我们存储的,管理的和依靠的数据比以往任何时候都多。投资于有效的解决方案降低数据质量差的风险,比以往任何时候都显得重要。
成千上万的企业现在面对自己的责任,并投资于数据质量软件。它们也必须满足过时的数据和问题的再解决所产生的费用。通常情况下,企业根本不明白他们正在使用的数据,这意味着数据质量措施在实施时成本会失控。
36大数据网
面对这些昂贵的项目,很多企业推迟数据质量改进措施,担心他们是“只有痛苦,没有收获”。关于价格昂贵、难以管理的数据质量项目的恐怖故事可能从企业开始掌握问题时就阻碍了业务。商家没有意识到,有效的数据质量项目产生令人印象深刻的投资回报(ROI),并能大量提高工作效率和士气。这只是需要以正确的方式来衡量的。
数据质量项目将提升整个企业的效率和并切实节约成本。从销售部门到支持团队,整个生命周期变得更加简单和易于管理。该业务能够更好地报告其进展情况并且使用数据从过去塑造其到未来的发展方向。
36大数据网站
有这些理想的结果主要有两个原因:
把积极的结果变成文字很简单:我们经常在我们的博客中讲数据质量高的好处。根据数据或者节约的花费而表现出的积极成果可能不那么明显。除非你可以跟踪它,并提供确凿的证据,不然去证明积极的投资回报是不可能的,而且这是你能证明有价值的数据质量的唯一途径。
36大数据网站
即使员工觉得自己能更有效率的工作,并且客户觉得他们对你的品牌有更多的信心,但是依旧没有任何事实和数据能够支持他们。也就是说,除非你主动跟踪变化的影响。
要跟踪经济的影响,有几种有效的方法来衡量数据质量项目中的投资回报率。
必要的测量是收益与支出,如这些例子中展示的:
虽然这看似简单,但在实践中是很复杂的。当数据不兼容,或容易导出和处理时,旧的系统会引发挑战,。对于数据质量项目意味着什么以及他们被期望投资的多少,不同的部门有不同的看法。除非投资回报率得到证明,不然鼓励买进跨组织对于它也很困难,而且到那时,该项目可能会接近完成。
36大数据网站
无论如何,企业必须能够表明,数据质量项目取得了成功。这将确保企业可以提出理由保持数据清洁和无成本重复。
当一个企业关心数据质量项目的成本问题,选择需要最少的培训和实惠的前期投资工具是很有帮助的。如果数据被有效地处理,最好使用集成的工具,而不是一个会引入更多的数据质量的挑战导出/导入过程,这也是很有帮助的。
如果你不能相信你的企业依赖的数据,它将变得不那么有用,而且会会失去它的价值。曾经是一个重要的商业资产成为陈旧、笨拙的可能会或也可能不会支持你的目标的数据集合。
36大数据网站
关键是要载有可衡量的目标,并确保进度被有效跟踪。只有这样,企业才能知道它的数据是符合目标的,才可以定义数据质量项目的投资回报率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15