
R中的apply族函数
如果计算涉及到 一个单一的向量,而结果也是一个向量 , tapply函数 是一个可选项,不同于aggregate函数,它返回一个向量或数组,这使得其单个元素很容易被访问。
将组定义为矩阵的行或列,即操作目标为矩阵的每一列或行时, apply函数 时最佳选择。该函数通常会返回一个向量或数组,但根据行或列操作的结果维度不同,将返回一个列表。
将组定义为列表中的元素。 如果组已经形成列表元素,那么 sapply或lapply函数 比较适合,它们的区别是lapply返回一个列表,而sapply可将输出简化为向量或数组。有时可以结合使用split函数,将需要处理的数据创建为一个列表,然后再使用这两个函数。
如果所要计算函数的参数为一个矩阵或数组, 可以考虑使用 mapply函数 ,该函数非常的灵活和简单,其返回的结果一般是列表形式。
先来看一下tapply()、apply()、lapply()、sapply()和mapply()函数的 语法规则:
tapply(X, INDEX, FUN = NULL, ..., simplify = TRUE)
apply(X, MARGIN, FUN, ...)
lapply(X, FUN, ...)
sapply(X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE)
mapply(FUN, ..., MoreArgs = NULL, SIMPLIFY = TRUE,
USE.NAMES = TRUE)
根据不同的函数,输入数据X可能是向量、数组、矩阵或数据框;INDEX一般为类别变量;MARGIN指定矩阵的维度,1表示矩阵的行,2表示矩阵的列;FUN为参与运算的函数,可以是R自带的函数也可以是自己编写的函数;...为函数FUN指定的参数,紧跟在函数的后面。
接下来看一下各个函数的应用情况
为了处理基于一个或多个分组变量的单个向量,可以使用tapply函数, 该函数返回一个数组,其维数与分组向量的维数相同 。
注意,该函数的输入数据必须是向量,且分析向量与分组向量的长度必须一致
如果想分析iris数据集中Sepal.Length在各个花种中的最大值,可以通过tapply函数实现,这里的Sepal.Length和Species为两个向量,且各自的长度均相等。
如果想对某个变量(向量)进行多变量的分组分析时,也可以采用tapply函数。
首先构造一个数据框:
接下来想对z变量做分组统计,分组变量为x和y
这里的NA表示x和y的分组中没有对应的z值。
当数据具备 数组 的特性,可通过 apply函数对数据的每个维度进行运算 ,该函数需要 三个参数 :需要计算的 数组、运算维度的索引号和使用的函数。
标准化一个矩阵:这里可以直接给参数FUN为scale
当然,如果想统计各个列的均值,为比较显式循环和apply的隐式循环,程序如下,就可以比较出两种方式的效率:
\
结果显式,通过apply计算矩阵列的均值速度是显式循环的50倍。这说明在R中使用循环的话尽量使用到隐式的向量化计算,否则计算效率非常差。
再来看一个如何使用自编函数应用到apply中:这里显式了前7列的统计量值。
lapply()函数和sapply()函数把一个列表或向量作为其第一个参数,再把需要应用到每个列表元素的函数作为它的第二个参数。 其实它也应用到了循环,是一种隐式的循环,对列表的每一个元素做同样的函数计算。
应用:查看字符向量中每一个元素所包含的单词个数
使用sapply函数的另一个重要问题涉及到数据框。当数据框被视为列表时,数据框的每一列看着独立的列表元素。
查看数据集iris和ChickWeight各个字段的模式和类
通过以上的应用,可以提取满足特定条件的数据框的列
接下来使用自编函数加入到sapply函数中,实现循环。该自编函数的目的是计算出1000个100*5的矩阵中最大相关系数的均值。 这里很关键的一点是给自编函数传一个虚拟参数i用来循环。
最后再来看一下mapply函数的应用:该函数的第一个参数为指定的函数,第二个参数为指定函数的参数。如果根据某种正则表达式将一个字符向量的对应特征取出来,例如取出'qaws1few4g'中的'1f'和'4g'
最后总结一下:
tapply()的被分析对象必须且只能是向量
apply()的被分析对象必须且只能是矩阵或数组
sapply()的被分析对象必须且只能是向量或列表
lapply()的被分析对象必须且只能是向量或列表
mapply()的被分析对象必须是函数
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29