
SQL,是结构语言化查询语言(Structured Query Language)的简称。SQL语言是一种数据库查询和程序设计语言,用于存取数据以及查询、更新和管理关系数据库系统;同时也是数据库脚本文件的扩展名。
sqldf程序包是R语言中实用的数据管理辅助工具,sqldf程序包中比较常用的是sqldf函数中的select 语句。
#使用SQL语句操作数据框,需要加载的程序包sqldf,tcltk,使用iris数据集以及演示
library(sqldf)
library(tcltk)
head(iris)#了解数据集由5各变量组成
#取出前几行
a1r <- head(iris,10)#一般方法
a1s <- sqldf("select * from iris limit 10")#取出数据框的前六行,关键词limit
identical(a1r, a1s)#比较两个数据框是否相同
#取出子集
a2r <- subset(iris, grepl("^se", Species))#取出物种列中以se开头的数据子集
a2s <- sqldf("select * from iris where Species like 'se%'")#取出数据的子集,关键词like
all.equal(as.data.frame(a2r), a2s)#检验数据是否有差异
#指定某变量值为两个以上时的提取
a3r <- subset(iris, Species %in% c("setosa", "virginica"))#在iris数据集中,选出量物种是setosa和virginica的行
a3s <- sqldf("select * from iris where Species in ('setosa', 'virginica')")#注意单引号和双引号
row.names(a3r) <- NULL#a3r选的是子集,因而行名还是与原数据集相同
identical(a3r, a3s)
#指定某变量范围时数据集的提取
a4r <- subset(iris, Petal.Length >= 0 & Petal.Length <= 2.0)#选取breaks在20到30之间的数据
a4s <- sqldf("select * from iris where Petal.Length between 0 and 2.0", row.names = TRUE)#使用row.names=TRUE可以不把行名重命名
iris$Petal.Length
#数据合计
a5r <- aggregate(iris[1:2], iris[5], mean)#计算出了3个物种前两个变量的平均值
a5s <- sqldf('select Species, avg("Sepal.Length") `Sepal.Length`, avg("Sepal.Width") `Sepal.Width` from iris group by Species')#关键词group by
all.equal(a5r, a5s)#查看数据是否相同
# 提取某变量breaks从小到大排序后的前3行的数据,除数据属性和列名外相同
head(warpbreaks)
a6r <- head(warpbreaks[order(warpbreaks$breaks), ], 3)
a6s <- sqldf("select * from warpbreaks order by breaks limit 3")
# attributes(a6r) <- attributes(a6s) <- NULL#去除属性
row.names(a6r) <- NULL#去除列
identical(a6r, a6s)
# 提取某变量breaks从大到小排序后的前3行的数据,除数据属性和列名外相同
a7r <- head(warpbreaks[order(warpbreaks$breaks, decreasing = TRUE), ], 3)
a7s <- sqldf("select * from warpbreaks order by breaks desc limit 3")#关键词order by,desc表示降序
row.names(a7r) <- NULL
identical(a7r, a7s)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29