
python数据分析笔记—数据加载与整理
数据加载
导入文本数据
1、导入文本格式数据(CSV)的方法:
方法一:使用pd.read_csv(),默认打开csv文件。
9、10、11行三种方式均可以导入文本格式的数据。
特殊说明:第9行使用的条件是运行文件.py需要与目标文件CSV在一个文件夹中的时候可以只写文件名。第10和11行中文件名ex1.CSV前面的部分均为文件的路径。
方法二:使用pd.read.table(),需要指定是什么样分隔符的文本文件。用sep=””来指定。
2、当文件没有标题行时
可以让pandas为其自动分配默认的列名。
也可以自己定义列名。
3、将某一列作为索引,比如使用message列做索引。通过index_col参数指定’message’。
4、要将多个列做成一个层次化索引,只需传入由列编号或列名组成的列表即可。
5、文本中缺失值处理,缺失数据要么是没有(空字符串),要么是用某个标记值表示的,默认情况下,pandas会用一组经常出现的标记值进行识别,如NA、NULL等。查找出结果以NAN显示。
6、逐块读取文本文件
如果只想读取几行(避免读取整个文件),通过nrows进行制定即可。
7、对于不是使用固定分隔符分割的表格,可以使用正则表达式来作为read_table的分隔符。
(’\s+’是正则表达式中的字符)。
JSON数据是通过HTTP请求在Web浏览器和其他应用程序之间发送数据的标注形式之一。通过json.loads即可将JSON对象转换成Python对象。(import json)
对应的json.dumps则将Python对象转换成JSON格式。
直接使用read_excel(文件名路径)进行获取,与读取CSV格式的文件类似。
主要包含两种数据库文件,一种是SQL关系型数据库数据,另一种是非SQL型数据库数据即MongoDB数据库文件。
数据库文件是这几种里面比较难的,本人没有接触数据库文件,没有亲测,所以就不贴截图了。
1、数据库风格的合并
数据库风格的合并与SQL数据库中的连接(join)原理一样。通过调用merge函数即可进行合并。
当没有指明用哪一列进行连接时,程序将自动按重叠列的列名进行连接,上述语句就是按重叠列“key”列进行连接。也可以通过on来指定连接列进行连接。
当两个对象的列名不同时,即两个对象没有共同列时,也可以分别进行指定。
Left_on是指左侧DataFrame中用作连接的列。
right_on是指右侧DataFrame中用作连接的列。
通过上面的语句得到的结果里面只有a和b对应的数据,c和d以及与之相关的数据被消去,这是因为默认情况下,merge做的是‘inner’连接,即sql中的内连接,取得两个对象的交集。也有其他方式连接:left、right、outer。用“how”来指明。
也可以根据多个键(列)进行合并,用on传入一个由列名组成的列表即可。
2、索引上的合并
(1)普通索引的合并
Left_index表示将左侧的行索引引用做其连接键
right_index表示将右侧的行索引引用做其连接键
上面两个用于DataFrame中的连接键位于其索引中,可以使用Left_index=True或right_index=True或两个同时使用来进行键的连接。
(2)层次化索引
与数据库中用on来根据多个键合并一样。
3、轴向连接(合并)
轴向连接,默认是在轴方向进行连接,也可以通过axis=1使其进行横向连接。
(1)对于numpy对象(数组)可以用numpy中的concatenation函数进行合并。
(2)对于pandas对象(如Series和DataFrame),可以pandas中的concat函数进行合并。
·4、合并重叠数据
对于索引全部或部分重叠的两个数据集,我们可以使用numpy的where函数来进行合并,where函数相当于if—else函数。
对于重复的数据显示出相同的数据,而对于不同的数据显示a列表的数据。同时也可以使用combine_first的方法进行合并。合并原则与where函数一致,遇到相同的数据显示相同数据,遇到不同的显示a列表数据。
1、旋转数据
(1)重塑索引、分为stack(将数据的列旋转为行)和unstack(将数据的行旋转为列)。
(2)将‘长格式’旋转为‘宽格式’
2、转换数据
(1)数据替换,将某一值或多个值用新的值进行代替。(比较常用的是缺失值或异常值处理,缺失值一般都用NULL、NAN标记,可以用新的值代替缺失标记值)。方法是replace。
一对一替换:用np.nan替换-999
多对一替换:用np.nan替换-999和-1000.
多对多替换:用np.nan代替-999,0代替-1000.
也可以使用字典的形式来进行替换。
(2)离散化或面元划分,即根据某一条件将数据进行分组。
利用pd.cut()方式对一组年龄进行分组。
默认情况下,cut对分组条件的左边是开着的状态,右边是闭合状态。可以用left(right)=False来设置哪边是闭合的。
主要是指清理重复值,DataFrame中经常会出现重复行,清理数据主要是针对这些重复行进行清理。
利用drop_duplicates方法,可以返回一个移除了重复行的DataFrame.
默认情况下,此方法是对所有的列进行重复项清理操作,也可以用来指定特定的一列或多列进行。
默认情况下,上述方法保留的是第一个出现的值组合,传入take_last=true则保留最后一个。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11