
企业数据变现的四种模式
如今企业数据已经成为了新时期的数字石油,数据挖掘和数据分析已经成为企业核心竞争力。众多的企业也开始了“企业+大数据”的脚步,他们在应用的过程中也有疑问,数据很重要,但是数据如何去产生更大的价值?这也是数据变现的难题,数据变现是将不同维度、属性的数据应用到一个业务场景中,这其中可以是单领域应用,也可以是跨领域应用。
我们接下来看2家企业的数据变现之路是怎么走的。
第一家是传统家电行业的企业
这家公司在推出智能电视用来采集数据后,与一家大数据公司进行第一期合作,针对智能电视的信号回传的数据做一个大数据平台,对智能电视回传的数据进行一个可视化,可以看到用户的所在地以及基本的统计图表,但是不知道回传的数据能干什么。于是又进行了第二期合作,收集用户更多的信息,比如了解用户的年龄段、性别、有钱没钱等等,做用户分析,但是还是不知道这些数据有什么用。最后他们又开始了第三期的合作,一起探索企业数据怎么去变现。
这家公司一直在探索数据变现的道路,也在探索的道路中了解到用户的具体信息,用户看电视的时长以及一些使用习惯等等,这些数据帮助该企业提供更好的售后服务,提前服务,提高了用户的体验。
第二家是广州做房地产数据变现的大数据企业
这家企业之前追寻用户从线上看房到成为购房用户的行为分析,发现这种用户购房的转换率低的让人不敢相信,只有千分之五,后来将看房用户的数据,加上另外几个维度去测试,最后发现在看房的同时也看装修和看家具的用户会买房的概率有百分之二十。于是他们重新进行了数据模型和算法的调整,转换率整整提高了40倍。
从第一个案例,我们可以知道:
企业在数据变现的过程中,并不是一蹴而就的,特别是对传统企业来说,你更多的是做数据变现的前期准备,从数据采集开始再进行数据变现。虽然这家企业没有找到数据变现的直接途径,但也通过探索数据变现的过程中,利用数据去提升服务质量和用户体验,让用户信赖自己的产品。
从第二个案例,我们也可以知道:
就算是大数据企业,在数据变现的路上也不是一帆风顺的,也是摸着石头过河,大数据虽然火了有些年,但也是一个新生事物。这家房地产公司利用采集的数据建立用一个用户画像,针对具有看房+看装修+看家具的用户进行一个精准的营销,很显然收获是巨大。
企业数据变现之路如何走?数据产生于业务或者行为,体现数据变现的最好方式就是让数据回归到业务本身,让业务更好的增长。下面笔者说说企业数据变现的几种模式:
数据基础服务(数据交易、数据开放等)
据小编所知,一条高质量的金融数据价值高达几百元。在这个年代,所有企业都重视高价值的数据,因为这些数据可以让企业主更加了解高价值用户,接近高价值用户,触达用户内心。由于数据具有价值性,数据交易和数据共享也逐渐形成一个产业链,在我国拥有三个大数据交易平台,三个大数据交易所,十个大数据交易中心以及多个数据开放共享平台。
众所周知,数据交易和数据开放共享容易造成侵犯用户信息和隐私,数据的所有权也难以确定。相对美国对比,我国在数据安全和用户隐私领域的法律建设还拥有许多空白,但是关于保护用户隐私的呼声却不断变大。2016年苹果、亚马逊和谷歌母公司Alphabet在内的十余家科技公司表态支持微软对于美国政府部门秘密搜查用户数据的行为抗议,并且微软对美国司法部提出诉讼
在中国互联网络信息中心(CNNIC)发布的报告中提及“大数据应用愿景是美好的,但也对个人隐私形成严峻挑战,同时也建议政府需在法律曾名明确用户的“知情权”和“遗忘权”。
数据产品/工具商
一位大数据公司的CEO说“我们的产品就是把公司内部的分析能力让大家有偿的去使用,帮助他们增长”。将某方面能力赋予给大众,这是产品重要价值的体现。国内神策数据、GriowingIO、诸葛IO赋予用户分析的能力、Taradata和ORACLE赋予用户存储的能力。产品和工具的出现,使传统企业加快的企业转型的步伐,帮助企业从庞杂的数据背后挖掘、分析用户的行为习惯和喜好,找出更符合用户“口味”的产品和服务,并结合用户需求有针对性地调整和优化本身。
在数据分析和数据可视化的时候,我们要重视数据源的准确性和全量,只有数据源的质量足够好才有可能分析出正确的结果。
行业应用
进入2017年,数据已经成为每一个行业的重要生产资料和变革力量,对于海量数据的挖掘和运用更是驱动业务增长新动力。
“谷歌通过大数据预测甲型H1N1流感”和“美国的Target百货公司分析出女孩怀孕”这是我们比较熟悉的大数据应用案例,用户画像和推荐系统更是我们日常生活中可以碰到的,在我们逛亚马逊的时候会给我们推荐一本书,这就是根据我们的浏览数据、网上行为数据(也许还有线下的数据,比如你使用Kindle等等)来给我们推荐。在目前为止,大数据应用更多的集中在营销、金融、电商行业。
大数据咨询服务商/行业解决方案商
在数据时代,以数据分析为思维的运营和管理成为了企业业务发展的重要依据。在这以数据做为辅助决策指标的企业中,企业获得的数据是准确的,实时的,相对比传统咨询公司的滞后性有着大数据的全量性和实时性有着天然的优势。
在今天,大数据依然是一个新业务,许多企业都是摸着石头过河,都会在发展的过程中遇到茫茫多的问题,有些能解决,有些不能解决,那么这个时候就需要拥有数据分析思维和资深业务经验的服务商来帮助企业在往大数据方向转型和企业运营时期提供帮助。
数据基础服务、数据产品/工具商、行业应用、大数据咨询服务商/行业解决方案这就是企业数据变现的四种模式。大数据发展到今天,每一家数据公司都在摸索适合自身的变现模式。我们不要盲目的跟从他人的商业模式,只有适合自己的才是最好的,要让变现模式要适应业务,根据业务去调整、优化变现模式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05