京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在Tableau中计算累计百分比可以帮助我们更好地理解数据的趋势和变化。在本文中,我将向您展示如何使用Tableau计算累计百分比,并为您提供一些实用的技巧和建议。
首先,让我们了解什么是累计百分比。简而言之,累计百分比就是前N个值的总和除以所有值的总和。例如,如果我们有一个销售数据集合,我们可能会想知道每月的销售额占年度总销售额的百分比是多少。这种情况下,我们就可以使用累计百分比来计算每月份的销售额占全部销售额的百分比。
接下来,我们将一步一步地向您介绍如何在Tableau中计算累计百分比。我们将使用Tableau 2021.1版本进行演示。
第一步是准备您的数据。在此示例中,我们将使用“超级商店销售”数据集合,该数据集合包含了各种产品的销售数据以及相关的日期信息。我们需要将这些数据拖到Tableau的工作区域中,然后按照需要对其进行调整和过滤,以确保我们只处理所需的数据。
第二步是创建计算字段。要计算累计百分比,我们需要创建一个计算字段,该字段将为每个数据点计算其累计值。我们可以使用Window函数来实现这一点。在Tableau中,Window函数可以帮助我们在聚合函数中计算滑动窗口内的数值。
要创建计算字段,请单击“Analysis”选项卡,然后选择“Create Calculated Field”。然后,在计算字段编辑器中输入以下公式:
SUM([Sales]) / WINDOW_SUM(SUM([Sales]))
上述公式将为我们计算每个销售额数据点的累计百分比。请注意,此处假定您正在计算销售额的累计百分比。如果您要计算其他指标的累计百分比,例如数量或利润,则应相应地更改此公式。
第三步是将计算字段拖到工作区域中。现在,我们已经创建了计算字段,我们需要将它添加到工作表中以进行可视化。为此,请将计算字段拖放到工作区域中的行或列区域中,以便将其与其他维度和度量组合在一起。您还可以使用图表类型,例如线图或面积图,来更好地显示数据的趋势和变化。
最后,我们还可以对可视化进行进一步的调整和细节处理,以确保它符合我们的需求和要求。例如,我们可能希望更改轴标签、网格线和颜色方案,以突出显示数据中的重要信息和趋势。
在计算累计百分比时,还有一些有用的技巧和建议,可以帮助我们更好地使用Tableau,并获得更准确和有用的分析结果。以下是一些实用的技巧和建议:
月度级别的时间粒度,而不是日或周粒度。
总之,在Tableau中计算累计百分比可以帮助我们更好地理解数据的趋势和变化,从而做出更准确和有用的分析和决策。通过正确地准备数据、选择适当的计算函数和可视化类型,并了解一些实用的技巧和建议,我们可以更好地使用Tableau,并获得更好的分析结果。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12