
R语言:表格的线图转化
最先选取的是北京各区普通住宅成交十年(2016年及2006年)涨幅对比。这张图比较plain,主要拿来练习:
1.数据表格的基本整理及计算
2. 数据的初步分析
3.线图的基本绘图
图片输入为excel,然后倒入到r程序中。
install.packages("openxlsx")
library(openxlsx)
readFilePath<-"E:/citystock.xlsx"
mydata<-read.xlsx(readFilePath,"Sheet2")
按照短平快的思路,首先把线图做出来
plot(mydata$y2006,col="red",ylim=c(0,95000),type="b")lines(mydata$y2016,col="blue",type="b")
lines单独不能绘图,所以要plot先行。
2. 按照原始的表格,各区排名高低错落,看不出来趋势,所以插入order语句按照2006年的均价进行排序。然后检查一下。
mydata<-mydata[order(mydata$y2006),]
mydata
3.修改plot及lines语句,进行美化,线条及图例进行区分,因为区名是比较长的中文,所以字体要进行竖排及缩小,las=1,cex为0.5。
加入2006年及2016年均价的中间值(黄色线),作为参考。
mydata$mid<-(mydata$y2006+mydata$y2016)%/%2
plot(mydata$y2006,col="red",ylim=c(0,95000),type="b",xaxt="n",ylab="price")
lines(mydata$y2016,col="blue",type="b",pch=17,las=1)
lines(mydata$mid,col="gold",type="b",pch=16)
axis(1,las=2,at=c(1:16),labels=mydata$city,cex.lab=0.5)
4. 加入2006年,2016年各自的平均线,颜色为灰色及粉红。这样哪个区是超出的,一目了然。
abline(h=(mean(mydata$y2006)+mean(mydata$y2016))%/%2,col="grey")
abline(h=mean(mydata$y2016),col="pink")
abline(h=mean(mydata$y2006),col="pink")
5. 加入图例legend,,在2016年均线上加入互动标注(点击后才出现),以及缺省栅格
legend("topleft",bty="n",horiz=TRUE,pch=c(17,16,21),c("2016","mean","2006"),col=c("blue","gold","red"),cex=0.8)
text(locator(1),"2016均价",4,cex=.8,color="brown")
grid()
至此,由简单表格转化的图表基本完成。不过从图像来看,好像东城区涨幅最惊人,但是通过表格,其实东城区的涨幅并非最高。因此我们可能需要用条形图再显示。这个就需要我继续努力啦。数据分析培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29