
R语言:表格的线图转化
最先选取的是北京各区普通住宅成交十年(2016年及2006年)涨幅对比。这张图比较plain,主要拿来练习:
1.数据表格的基本整理及计算
2. 数据的初步分析
3.线图的基本绘图
图片输入为excel,然后倒入到r程序中。
install.packages("openxlsx")
library(openxlsx)
readFilePath<-"E:/citystock.xlsx"
mydata<-read.xlsx(readFilePath,"Sheet2")
按照短平快的思路,首先把线图做出来
plot(mydata$y2006,col="red",ylim=c(0,95000),type="b")lines(mydata$y2016,col="blue",type="b")
lines单独不能绘图,所以要plot先行。
2. 按照原始的表格,各区排名高低错落,看不出来趋势,所以插入order语句按照2006年的均价进行排序。然后检查一下。
mydata<-mydata[order(mydata$y2006),]
mydata
3.修改plot及lines语句,进行美化,线条及图例进行区分,因为区名是比较长的中文,所以字体要进行竖排及缩小,las=1,cex为0.5。
加入2006年及2016年均价的中间值(黄色线),作为参考。
mydata$mid<-(mydata$y2006+mydata$y2016)%/%2
plot(mydata$y2006,col="red",ylim=c(0,95000),type="b",xaxt="n",ylab="price")
lines(mydata$y2016,col="blue",type="b",pch=17,las=1)
lines(mydata$mid,col="gold",type="b",pch=16)
axis(1,las=2,at=c(1:16),labels=mydata$city,cex.lab=0.5)
4. 加入2006年,2016年各自的平均线,颜色为灰色及粉红。这样哪个区是超出的,一目了然。
abline(h=(mean(mydata$y2006)+mean(mydata$y2016))%/%2,col="grey")
abline(h=mean(mydata$y2016),col="pink")
abline(h=mean(mydata$y2006),col="pink")
5. 加入图例legend,,在2016年均线上加入互动标注(点击后才出现),以及缺省栅格
legend("topleft",bty="n",horiz=TRUE,pch=c(17,16,21),c("2016","mean","2006"),col=c("blue","gold","red"),cex=0.8)
text(locator(1),"2016均价",4,cex=.8,color="brown")
grid()
至此,由简单表格转化的图表基本完成。不过从图像来看,好像东城区涨幅最惊人,但是通过表格,其实东城区的涨幅并非最高。因此我们可能需要用条形图再显示。这个就需要我继续努力啦。数据分析培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26